首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An interlaboratory study involving 32 Time‐of‐Flight Static SIMS instruments from 12 countries has been conducted. Analysts were supplied, by NPL, with a protocol for analysis together with three reference materials; a thin layer of polycarbonate (PC) on a silicon wafer, a thin layer of polystyrene (PS) oligomers on etched silver and poly(tetrafluoroethylene) (PTFE). The study involved static SIMS analysis of each reference material for both positive and negative polarity secondary ions. The option to test instrument suitability for G‐SIMS was also provided. The results of this study show that over 84% of instruments have excellent repeatabilities of better than 1.9%. Repeatabilities can be as good as 0.4%. A relative instrument spectral response (RISR) is calculated for each instrument for each reference material and ion polarity. The RISR is used to evaluate variations in spectral response between different generic types of SIMS instruments. Use of the RISR allows the identification of contamination, charge stabilisation problems and incorrectly functioning ion detectors. The high quality of the data presented here allows the RISR to reveal differences in individual operation of each instrument such as the use of apertures to remove metastables from the spectra and the use of different post‐acceleration voltages for ion detection. Spectral reproducibility can be measured, here, by the equivalence of RISRs between materials and ion polarities. It is found that reproducibilities are on average 10% but can be as good as 4% for the best instruments. This figure shows the consistency between instruments in measuring spectra from different samples. This study sets out the basic framework to develop static secondary ion mass spectrometry (SSIMS) as a reliable measurement method. © Crown Copyright 2005. Reproduced with the permission of Her Majestry's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

2.
We investigated reduction of the matrix effect in time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) analysis by the deposition of a small amount of metal on the sample surfaces (metal‐assisted SIMS or MetA‐SIMS). The metal used was silver, and the substrates used were silicon wafers as electroconductive substrates and polypropylene (PP) plates as nonelectroconductive substrates. Irganox 1010 and silicone oil on these substrates were analyzed by TOF‐SIMS before and after silver deposition. Before silver deposition, the secondary ion yields from the substances on the silicon wafer and PP plate were quite different due to the matrix effect from each substrate. After silver deposition, however, both ion yields were enhanced, particularly the sample on the PP plate, and little difference was seen between the two substrates. It was therefore found that the deposition of a small amount of metal on the sample surface is useful for reduction of the matrix effect. By reducing the matrix effect using this technique, it is possible to evaluate from the ion intensities the order of magnitude of the quantities of organic materials on different substrates. In addition, this reduction technique has clear utility for the imaging of organic materials on nonuniform substrates such as metals and polymers. MetA‐SIMS is thus a useful analysis tool for solving problems with real‐world samples. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
An interlaboratory study involving 32 time‐of‐flight static SIMS instruments from 13 countries has been conducted. In Part I of the analysis of data, we showed that 84% of instruments have excellent repeatabilities of better than 1.9% and that a relative instrument spectral response (RISR) can be used to evaluate variations between different generic types of instrument. Use of the RISR improves comparability between instruments by a factor of 33. Here, in Part II, we study the accuracy of the mass scale calibration in TOF‐SIMS and evaluate instrument compatibility with G‐SIMS. We show that the accuracy of calibration of the mass scale is much poorer than generally expected (?60 ppm for peaks <200 u and ?150 ppm for a large molecular peak at 647 u). This is a major issue for analysts. Elsewhere, we have developed a detailed study of the factors affecting the mass calibration and have developed a generic protocol that improves accuracy by a factor of 5. Here, this framework of understanding is used to interpret the results presented. Furthermore, we show that eight out of the ten participants submitting data for G‐SIMS could use operating conditions that generated G‐SIMS spectra of the PC reference material. This demonstrates that G‐SIMS may be conducted with a wide variety of instrument designs. © Crown Copyright 2007. Reproduced by permission of the Controller of HMSO. Published by John Wiley & Sons, Ltd.  相似文献   

4.
Commercial copper wire and its polymer insulation cladding was investigated for the presence of three synthetic antioxidants (ADK STAB AO412S, Irganox 1010 and Irganox MD 1024) by three different mass spectrometric techniques including electrospray ionization–ion trap–mass spectrometry (ESI–IT–MS), matrix‐assisted laser desorption/ionization reflectron time‐of‐flight (TOF) mass spectrometry (MALDI–RTOF–MS) and reflectron TOF secondary ion mass spectrometry (RTOF–SIMS). The samples were analyzed either directly without any treatment (RTOF–SIMS) or after a simple liquid/liquid extraction step (ESI–IT–MS, MALDI–RTOF–MS and RTOF–SIMS). Direct analysis of the copper wire itself or of the insulation cladding by RTOF–SIMS allowed the detection of at least two of the three antioxidants but at rather low sensitivity as molecular radical cations and with fairly strong fragmentation (due to the highly energetic ion beam of the primary ion gun). ESI–IT‐ and MALDI–RTOF–MS‐generated abundant protonated and/or cationized molecules (ammoniated or sodiated) from the liquid/liquid extract. Only ESI–IT–MS allowed simultaneous detection of all three analytes in the extract of insulation claddings. The latter two so‐called ‘soft’ desorption/ionization techniques exhibited intense fragmentation only by applying low‐energy collision‐induced dissociation (CID) tandem MS on a multistage ion trap‐instrument and high‐energy CID on a tandem TOF‐instrument (TOF/RTOF), respectively. Strong differences in the fragmentation behavior of the three analytes could be observed between the different CID spectra obtained from either the IT‐instrument (collision energy in the very low eV range) or the TOF/RTOF‐instrument (collision energy 20 keV), but both delivered important structural information. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The degree of hydroxylation or hydration of aluminium surfaces has been examined by static secondary ion mass spectroscopy (SSIMS). The SSIMS spectra of a series of aluminium oxide, oxyhydroxide and hydroxide surfaces have been obtained using instruments in three configurations. Similarities were observed in both negative and positive secondary ions spectra. Even though a direct comparison of the relative intensities cannot be made from one instrument to the other, a similar ranking of the various aluminium hydroxylation states was observed. Several ranking methods are discussed, as well as the similarities and differences observed while using the three instruments. Similar secondary ions were detected whatever the degree of hydroxylation of the aluminium oxide. This argues in favour of the formation of fragments by the combination of individually sputtered atoms or clusters to form the more stable secondaries, rather than the kick-off of 'structure-related' clusters originating directly from the upper surface layer.  相似文献   

6.
Silicon oxynitride has been used as a shallow gate oxide material for microelectronics and its thickness has been reduced over the years to only a few tens of angstroms due to device size scaling. The nitride distribution and density characteristic in the gate oxide thus becomes imperative for the devices. The shallow depth profiling capability using time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) has huge potential for the nitrogen characterization of the shallow gate oxide film. In this article, both positive and negative spectra of TOF‐SIMS on silicon oxynitride have been extensively studied and it was found that the silicon nitride clusters SixN? (x = 1–4) are able to represent the nitrogen profiles because their ion yields are high enough, especially for the low‐level nitride doping in the oxide, which is formed by the annealing of nitric oxide on SiO2/Si. The gate oxide thickness measured by the TOF‐SIMS profiling method using 18O or CsO profile calibration was found to correlate very well with transmission electron microscope measurement. The nitrogen concentration in the gate oxide measured using the TOF‐SIMS method was consistent with the results obtained using the dynamic SIMS method, which is currently applied to relatively thicker oxynitride films. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Static SIMS (SSIMS) is a surface analytical technique capable of providing molecular chemical information from solids. A major barrier to the wider take‐up of the technique is the complexity associated with the interpretation of SSIMS spectra. Quality of the interpretation depends on the expertise of analysts and making references to the limited mass spectral libraries. For many materials, there are no SSIMS library spectra. A new library‐independent method, G‐SIMS, is capable of facilitating the interpretation of SSIMS data. G‐SIMS spectra contain parent fragments, which are formed without substantial degradation or rearrangements, and highlight molecular fragments, which are directly related to the surface. In our study, G‐SIMS has been tested on medically relevant biodegradable polyester series, including poly (glycolic acid) (PGA), poly‐l‐(lactic acid) (PLA), poly‐β‐(hydroxybutyrate) (PHB) and poly‐ε‐(caprolactone) (PCL). The polyester series chosen here have closely related structures, which allow us to explore the capabilities of G‐SIMS. The G‐SIMS spectra have facilitated the identification of different polyesters by exhibiting mainly characteristic ions, representative of the polymers' molecular structures. The results also indicated that for the chosen polyester series, the larger the repeating monomer structures, the smaller the maximum number of repeat units were seen in the G‐SIMS spectra. The G‐SIMS spectra for the homologous polyester series have provided an insight into the fragmentation mechanisms as a function of repeating monomer molecular weights and structures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A validation interlaboratory trial was carried out to prepare ISO 12010: Water quality??Determination of short-chain polychlorinated alkanes (SCCP) in water??Method using gas chromatography/mass spectrometry (GC-MS) and electron capture negative ionisation (ECNI). The task was to determine the sum of short-chain polychlorinated n-alkanes with carbon chain lengths of C10?CC13 and a chlorine content between 49% (g/100?g) and 67% (g/100?g) in water by GC-ECNI-MS. The quantification had to be performed by multiple linear regression as described in ISO/DIS 12010, the compulsory method. Samples distributed were real river samples, and waste water spiked with a target concentration of 0.4 and 0.6???g/L for the sum of SCCPs, i.e. a concentration around the environmental quality target level according to the European Water Framework Directive. The different types of water samples tested were surface water with <150?mg/L suspended matter, surface water with 0.5?g/L suspended matter, and filtered waste waster. The interlaboratory trial included the extraction of the water samples, a column chromatographic clean up, a concentration step, and integration of chromatographic unresolved complex mixtures as well as the calibration and quantification by multiple linear regression. The reproducibility standard deviation of the standard concentration was 11.9%. Reproducibility standard deviations of concentrations in the three different water samples between 27.8 and 34.2% were achieved by 10?C12 participating laboratories from six countries.  相似文献   

9.
The use of gas chromatography coupled to high‐resolution magnetic sector mass spectrometers (GC‐HRMS) is well established for dioxin and furan analysis. However, the use of gas chromatography coupled to triple quadrupole (MS/MS) and time of flight (TOF) mass spectrometers with atmospheric pressure ionization (API) and traditional electron ionization (EI) for dioxin and furan analysis is emerging as a viable alternative to GC‐HRMS screening. These instruments offer greater versatility in the lab for a wider range of compound identification and quantification as well as improved ease of operation. The instruments utilized in this study included 2 API‐MS/MS, 1 traditional EI‐MS/MS, an API‐quadrupole time of flight mass spectrometer (API‐QTOF), and a EI‐high‐resolution TOF (EI‐HRTOF). This study compared these 5 instruments to a GC‐HRMS using method detection limit (MDLs) samples for dioxin and furan analysis. Each instrument demonstrated acceptable MDL values for the 17 chlorinated dioxin and furans studied. The API‐MS/MS instruments provide the greatest overall improvement in MDL value over the GC‐HRMS with a 1.5 to 2‐fold improvement. The API‐QTOF and EI‐TOF demonstrate slight increases in MDL value as compared with the GC‐HRMS with a 1.5‐fold increase. The 5 instruments studied all demonstrate acceptable MDL values with no MDL for a single congener greater than 5 times that for the GC‐HRMS. All 5 instruments offer a viable alternative to GC‐HRMS for the analysis of dioxins and furans and should be considered when developing new validated methodologies.  相似文献   

10.
This study concerns the measurement of the surface properties of sensitive materials, exampled by a polymer blend of polyvinyl chloride (PVC) and polycarbonate (PC), by static secondary ion mass spectrometry (SSIMS) and atomic force microscopy (AFM) operated in force modulation microscopy mode. It is shown that SSIMS, although damaging the surface little, causes significant subsurface damage. This changes the material behaviour in the irradiated region and leads to changes in the AFM measurements of both the topography and nanomechanical parameters such as the elastic moduli. Alternatively, if AFM is conducted first, contact with the tip may lead to modification of the surface. In order to minimize damage, soft cantilevers (spring constant ~0.1 N m?1) are used. It is recommended that analyses be conducted on identifiably equivalent or partially overlapping regions, where any damage effects may be separated. Because, in SSIMS, a flood gun neutralizer must be used that irradiates the whole sample, it is recommended that AFM analysis is conducted prior to SSIMS even if different areas of the same sample are to be studied. The fractional areas identified by atomic species in SSIMS and separately by AFM are both the same and give the consistent ratio PVC/PC = 44 : 56. Both of these analyses are characteristic of the substrate below the top monolayer. The fractional areas determined using molecular species in SSIMS and by G‐SIMS both give PVC/PC = 20 : 80, which is interpreted to show that more than half of the PVC surface is covered by a monolayer of PC. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, polymeric (MW 50 000) and oligomeric (MW 2000) poly (lactic acid) (PLA), both with and without end‐group deuterium exchange, were analysed using static secondary ion mass spectrometry (SSIMS) to investigate the contribution of end‐group‐derived secondary ions to the SSIMS spectra. By monitoring the SSIMS intensities between the non‐deuterated and deuterated PLA, it is evident that the only significant end‐group‐derived secondary ions are [nM + H]+ (n > 1) and C4H9O2+. The gentle‐SIMS (G‐SIMS) methodology was employed to establish that deuterated fragments were produced through low energy processes and were not the result of substantial rearrangements. It was noted that end‐group‐derived secondary ions had higher G‐SIMS intensities for oligomeric PLA than polymeric PLA, showing that these secondary ions are simple fragment products that are not the result of rearrangement or degraded product ions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The surface chemistry of a range of random poly l‐lactide‐co‐glycolide (PLGA) materials has been investigated using XPS, static secondary ion mass spectrometry (SSIMS) and gentle secondary ion mass spectrometry (G‐SIMS). The estimated mole fraction of lactide units provided by SSIMS was in good agreement with bulk composition and appeared not to have been affected by contamination. Conversely, XPS assessment of lactide compositions was unreliable due to hydrocarbon contamination contributions. In this study, we propose a novel model to demonstrate that by using SSIMS it is possible to infer the degree of trans‐esterification for PLGA co‐polymers synthesised from a mixture of lactide and glycolide homo‐dimers. This was determined by introducing two independent parameters, the ratio of trans‐esterified bonds to the total number of ester bonds, PT, and the lactide composition. The model has indicated that, for this set of polymers, PT was approximately 0.25. Furthermore, we have demonstrated that G‐SIMS successfully identified the structurally important key fragments leading to direct identification. Analysis by G‐SIMS showed that the glycolic acid units from all PLGA compositions are emitted in a lower energy‐fragmentation process than lactic acid units. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The possibilities of quantitative secondary ion mass spectrometry (SIMS) depth profiling of Al in AlxGa1 ? xN/AlN/GaN transistor heterostructures are shown. Using a series of test structures for a TOF.SIMS‐5 time‐of‐flight mass spectrometer, we obtained a refined linear calibration dependence of the secondary‐ion yield on the composition ×, namely, Y(CsAl+)/Y(CsGa+) = K × x/(1 ? x), with a high linear correlation coefficient, Rl = 0.9996, which permits quantitative SIMS analysis of relatively thick AlGaN barrier layers. The method of profile reconstruction with allowance for the main artifacts of ion sputtering has been first applied for the analysis of GaN/AlGaN/AlN/GaN high electron mobility transistor structure. This method permits to perform quantitative analysis of the thickness and composition of a nanometer‐thin AlN sublayer and to estimate the measurement error. For the structure being studied, the AlN sublayer is 1.2 ± 0.2 nm thick. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The present study establishes a simple, rapid and sensitive method for the simultaneous quantification of different small pharmaceutical drugs using a matrix‐assisted laser desorption/ionization source (MALDI) coupled with a time‐of‐flight (TOF) mass analyzer. Neither time‐consuming sample preparation, nor special target plates, isotopically labelled internal standards or other extra equipment are necessary. A simple standard dried‐droplet preparation with the common matrix α‐cyano‐4‐hydroxycinnamic acid (CHCA) was used. The background signals of CHCA in the low‐mass region did not pose the presumed problem, because the sensitivity, resolution and mass accuracy of a modern MALDI‐TOF MS system is sufficient to overcome this difficulty. Four experiments were performed in order to verify the quantification method. First, ten different phenothiazines were quantified in the range of 5–2000 nM (1–880 ng/mL). A good precision (relative standard deviation (RSD) 4.4–9.3%), linearity (R2 >0.99) and accuracy (error 4.7–11%) was obtained in all cases. Additionally, simultaneous quantification of these ten phenothiazines was carried out in human plasma without prior chromatographic separation in the range of 2–1750 ng/mL yielding good linearity, precision and accuracy (mean RSD 7.6%; R2 >0.99, mean error 8.0%). Accordingly, a quantitative analysis of ten chemically and pharmaceutically unrelated drugs was performed in the same way. A comparable linearity (R2 >0.99), precision (mean RSD 7.6%) and accuracy (mean error 8.3%) was obtained in the range of 5–2000 nM. Finally, the prazosin content of a commercial tablet was directly determined without further purification steps. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A skin sample from a South‐Andean mummy dating back from the XIth century was analyzed using time‐of‐flight secondary ion mass spectrometry imaging using cluster primary ion beams (cluster‐TOF‐SIMS). For the first time on a mummy, skin dermis and epidermis could be chemically differentiated using mass spectrometry imaging. Differences in amino‐acid composition between keratin and collagen, the two major proteins of skin tissue, could indeed be exploited. A surprising lipid composition of hypodermis was also revealed and seems to result from fatty acids damage by bacteria. Using cluster‐TOF‐SIMS imaging skills, traces of bio‐mineralization could be identified at the micrometer scale, especially formation of calcium phosphate at the skin surface. Mineral deposits at the surface were characterized using both scanning electron microscopy (SEM) in combination with energy‐dispersive X‐ray spectroscopy and mass spectrometry imaging. The stratigraphy of such a sample was revealed for the first time using this technique. More precise molecular maps were also recorded at higher spatial resolution, below 1 µm. This was achieved using a non‐bunched mode of the primary ion source, while keeping intact the mass resolution thanks to a delayed extraction of the secondary ions. Details from biological structure as can be seen on SEM images are observable on chemical maps at this sub‐micrometer scale. Thus, this work illustrates the interesting possibilities of chemical imaging by cluster‐TOF‐SIMS concerning ancient biological tissues. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
 ISO/IEC guide 25 is the internationally recognised base document for the accreditation of laboratories. Laboratory accreditation is a system of peer assessment and a formal recognition that a laboratory is competent to perform specific tests or types of tests ISO/IEC guide 25 plays a fundamental role in the life of the analytical chemist and is pivotal to the acceptance of the philosophy "once tested everywhere accepted" and to ensuring the mutual acceptance of test data. Within the EU, the attainment of accreditation to ISO/IEC guide 25 has become a way of life and it is now mandatory for laboratories engaged in certain regulatory work areas. Guide 25 is currently under revision and over the past 2 years or so it has been the subject of much debate among the calibration and testing community and it has engendered a considerable amount of written and oral comments. The latest revision entitled "Draft International Standard ISO/IEC DIS 17025: General Requirements for the Competence of Testing and Calibration Laboratories" was circulated to national standard organisations for their "comment and approval" in mid 1998. Voting on this document commenced on 9 July and terminates on 9 December 1998. It is anticipated that a final draft could be circulated in 1999. In accordance with the Vienna agreement this is a parallel ISO/CEN enquiry. This paper will discuss the implications of the technical requirements of the current document for analytical chemistry with particular emphasis on, the strengths, weaknesses and deficits inherent in the draft circulated in July 1998.  相似文献   

17.
A Versailles Project on Advanced Materials and Standards round robin test (RRT) has been conducted to evaluate the linearity of the instrumental intensity scale and correction method using an approximation intermediate extended dead time model with parameters derived from two different isotope depth profiles. Nine organizations in five countries participated. An arsenic‐implanted silicon wafer and a film of BN diffused into a Si wafer were supplied by the National Institute of Advanced Industrial Science and Technology along with instructions for the RRT. The instruments used to analyze 103(AsSi)? and 105(AsSi)? from arsenic‐implanted samples were five quadrupole‐type SIMS and four magnetic‐sector type SIMS. The instruments used to analyze 10B+ and 11B+ from the BN‐diffused samples were three quadrupole‐type SIMS, four magnetic‐sector type SIMS, and one time‐of‐flight type SIMS. We validated the usefulness of the approximation intermediate extended dead time model to correct saturated intensities for all SIMS in this RRT. The optimum extension parameter ρ tends to be affected by the ratio of the maximum reliable intensity to the maximum intensity in raw profiles. From the ratio, ρ may be predicted when the intensity reaches full saturation. On the other hand, ρ is also affected by lateral non‐uniformity of intensity. In practice, because the maximum intensity does not reach full saturation and the intensity is not laterally uniform, ρ is likely to be smaller than its predicted value. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The surface structures of three kinds of poly(ethylene oxide)‐segmented nylon (PEO‐Ny) molten films were investigated using a scanning electron microscopy (SEM), an electron spectroscopy for a chemical analysis (ESCA), and a static secondary ion mass spectrometry (SSIMS). The PEO‐Ny's used were high semicrystalline PEO‐segmented poly(iminosebacoyliminohexamethylene) (PEO‐Ny610), low semicrystalline PEO‐segmented poly(iminosebacoylimino‐m‐xylene) (PEO‐NyM10), and amorphous PEO‐segmented poly(iminoisophthaloyliminomethylene‐1,3‐cyclohexylenemethylene) (PEO‐NyBI). SEM observations show that the surfaces of the PEO‐Ny610 and PEO‐NyM10 films are composed of spherulite, and that PEO‐NyBI film has a smooth surface. The results of ESCA and SSIMS exhibit the significant enrichments of PEO segment at the surfaces of all the films regardless of the crystallinity. The reason for the enrichment of PEO segment was discussed in terms of the surface tension of the corresponding homopolymers in the melting state. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1045–1056, 2000  相似文献   

19.
Surface‐patterned 2‐hydroxyethyl methacrylate hydrogels were produced by using a method similar to the silicon‐rubber stamp fabrication for microcontact printing. Polymerization and network formation were carried out in contact with a micromachined silicon wafer. The polymeric patterns retained their shape during isotropic swelling/deswelling cycles. The use of microstructured hydrogels in tissue engineering can be envisaged.  相似文献   

20.
In the last few years static secondary ion mass spectrometry (SSIMS) has proved to be a versatile and indispensable method for determining the composition and the structure of the outermost molecular layers of a surface. In particular when using a high-resolution time-of-flight (TOF) mass analyser a high sensitivity can be obtained with SSIMS. In this review it will be shown that the analysis of surfaces with a well-defined chemical structure by means of SSIMS has given detailed insight into the relation between the structure of the fragment ions formed by ion bombardment of the surface and the original surface structure. These studies have also improved the possibilities for quantifying the SSIMS results. In addition, the better knowledge about the ionformation process can be used for the analysis of surfaces of unknown composition and structure. Finally, some recent applications of SSIMS will be presented.Dedicated to Professor Günther Tölg on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号