首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Understanding the catalytic process of the heterolytic splitting and formation of molecular hydrogen is one of the key topics for the development of a future hydrogen economy. With an interest in elucidating the enzymatic mechanism of the [Fe(2)(S(2)C(2)H(4)NH)(CN)(2)(CO)(2)(μ-CO)] active center uniquely found in [FeFe]hydrogenases, we present a detailed spectroscopic and theoretical analysis of its inorganic model [Fe(2)(S(2)X)(CO)(3)(dppv)(PMe(3))](+) [dppv = cis-1,2-bis(diphenylphosphino)ethylene] in two forms with S(2)X = ethanedithiolate (1edt) and azadithiolate (1adt). These complexes represent models for the oxidized mixed-valent Fe(I)Fe(II) state analogous to the active oxidized "H(ox)" state of the native H-cluster. For both complexes, the (31)P hyperfine interactions were determined by pulse electron paramagnetic resonance and electron nuclear double resonance (ENDOR) methods. For 1edt, the (57)Fe parameters were measured by electron spin-echo envelope modulation and M?ssbauer spectroscopy, while for 1adt, (14)N and selected (1)H couplings could be obtained by ENDOR and hyperfine sublevel correlation spectroscopy. The spin density was found to be predominantly localized on the Fe(dppv) site. This spin distribution is different from that of the H-cluster, where both the spin and charge densities are delocalized over the two Fe centers. This difference is attributed to the influence of the "native" cubane subcluster that is lacking in the inorganic models. The degree and character of the unpaired spin delocalization was found to vary from 1edt, with an abiological dithiolate, to 1adt, which features the authentic cofactor. For 1adt, we find two (14)N signals, which are indicative for two possible isomers of the azadithiolate, demonstrating its high flexibility. All interaction parameters were also evaluated through density functional theory calculations at various levels.  相似文献   

2.
Zhou T  Mo Y  Zhou Z  Tsai K 《Inorganic chemistry》2005,44(14):4941-4946
Models simulating the catalytic diiron subcluster [FeFe](H) in Fe-only hydrogenases have often been designed for computational exploration of the catalytic mechanism of the formation and cleavage of dihydrogen. In this work, we extended the above models by explicitly considering the electron reservoir [4Fe-4S](H) which is linked to the diiron subcluster to form a whole H cluster ([6Fe-6S] = [4Fe-4S](H) + [FeFe](H)). Large-scale density functional theory (DFT) computations on the complete H cluster, together with simplified models in which the [4Fe-4S](H) subcluster is not directly involved in the reaction processes, have been performed to probe hydrogen activation on the Fe-only hydrogenases. A new intermediate state containing an Fe(p)...H...CN two-electron three-center bond is identified as a key player in the H2 formation/cleavage processes.  相似文献   

3.
Greco C  Bruschi M  Fantucci P  Ryde U  De Gioia L 《Chemphyschem》2011,12(17):3376-3382
A QM/MM investigation of the active-ready (H(ox)) form of [FeFe]-hydrogenase from D. desulfuricans, in which the electronic properties of all Fe-S clusters (H, F and F') have been simultaneously described using DFT, was carried out with the aim of disclosing a possible interplay between the H-cluster and the accessory iron-sulfur clusters in the initial steps of the catalytic process leading to H(2) formation. It turned out that one-electron addition to the active-ready form leads to reduction of the F'-cluster and not of the H-cluster. Protonation of the H-cluster in H(ox) is unlikely, and in any case it would not trigger electron transfer from the accessory Fe(4)S(4) clusters to the active site. Instead, one-electron reduction and protonation of the active-ready form trigger electron transfer within the protein, a key event in the catalytic cycle. In particular, protonation of the H-cluster after one-electron reduction of the enzyme lowers the energy of the lowest unoccupied molecular orbitals localized on the H-cluster to such an extent that a long-range electron transfer from the F'-cluster towards the H-cluster itself is allowed.  相似文献   

4.
Pyruvate formate-lyase activating enzyme (PFL-AE) is a representative member of an emerging family of enzymes that utilize iron-sulfur clusters and S-adenosylmethionine (AdoMet) to initiate radical catalysis. Although these enzymes have diverse functions, evidence is emerging that they operate by a common mechanism in which a [4Fe-4S](+) interacts with AdoMet to generate a 5'-deoxyadenosyl radical intermediate. To date, however, it has been unclear whether the iron-sulfur cluster is a simple electron-transfer center or whether it participates directly in the radical generation chemistry. Here we utilize electron paramagnetic resonance (EPR) and pulsed 35 GHz electron-nuclear double resonance (ENDOR) spectroscopy to address this question. EPR spectroscopy reveals a dramatic effect of AdoMet on the EPR spectrum of the [4Fe-4S](+) of PFL-AE, changing it from rhombic (g = 2.02, 1.94, 1.88) to nearly axial (g = 2.01, 1.88, 1.87). (2)H and (13)C ENDOR spectroscopy was performed on [4Fe-4S](+)-PFL-AE (S = (1)/(2)) in the presence of AdoMet labeled at the methyl position with either (2)H or (13)C (denoted [1+/AdoMet]). The observation of a substantial (2)H coupling of approximately 1 MHz ( approximately 6-7 MHz for (1)H), as well as hyperfine-split signals from the (13)C, manifestly require that AdoMet lie close to the cluster. (2)H and (13)C ENDOR data were also obtained for the interaction of AdoMet with the diamagnetic [4Fe-4S](2+) state of PFL-AE, which is visualized through cryoreduction of the frozen [4Fe-4S](2+)/AdoMet complex to form the reduced state (denoted [2+/AdoMet](red)) trapped in the structure of the oxidized state. (2)H and (13)C ENDOR spectra for [2+/AdoMet](red) are essentially identical to those obtained for the [1+/AdoMet] samples, showing that the cofactor binds in the same geometry to both the 1+ and 2+ states of PFL-AE. Analysis of 2D field-frequency (13)C ENDOR data reveals an isotropic hyperfine contribution, which requires that AdoMet lie in contact with the cluster, weakly interacting with it through an incipient bond/antibond. From the anisotropic hyperfine contributions for the (2)H and (13)C ENDOR, we have estimated the distance from the closest methyl proton of AdoMet to the closest iron of the cluster to be approximately 3.0-3.8 A, while the distance from the methyl carbon to the nearest iron is approximately 4-5 A. We have used this information to construct a model for the interaction of AdoMet with the [4Fe-4S](2+/+) cluster of PFL-AE and have proposed a mechanism for radical generation that is consistent with these results.  相似文献   

5.
A mixed-valent Fe(ii)Fe(i) model of the H(ox) state of [FeFe]-hydrogenase is shown, under certain conditions, to exhibit regioselective (12)CO/(13)CO exchange activity similar to that observed for H(ox).  相似文献   

6.
Zhou T  Mo Y  Liu A  Zhou Z  Tsai KR 《Inorganic chemistry》2004,43(3):923-930
The mechanism of the enzymatic hydrogen bond forming/breaking (2H(+) + 2e<==>H(2)) and the plausible charge and spin states of the catalytic diiron subcluster [FeFe](H) of the H cluster in Fe-only hydrogenases are probed computationally by the density functional theory. It is found that the active center [FeFe](H) can be rationally simulated as [[H](CH(3)S)(CO)(CN(-))Fe(p)(CO(b))(mu-SRS)Fe(d)(CO)(CN(-))L], where the monovalence [H] stands for the [4Fe4S](H)(2+) subcluster bridged to the [FeFe](H) moiety, (CH(3)S) represents a Cys-S, and (CO(b)) represents a bridging CO. L could be a CO, H(2)O, H(-), H(2), or a vacant coordination site on Fe(d). Model structures of possible redox states are optimized and compared with the X-ray crystallographic structures and FTIR experimental data. On the basis of the optimal structures, we study the most favorable path of concerted proton transfer and electron transfer in H(2)-forming/breaking reactions at [FeFe](H). Previous mechanisms derived from quantum chemical computations of Fe-only hydrogenases (Cao, Z.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3734; Fan, H.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3828) involved an unidentified bridging residue (mu-SRS), which is either a propanedithiolate or dithiomethylamine. Our proposed mechanism, however, does not require such a ligand but makes use of a shuttle of oxidation states of the iron atoms and a reaction site between the two iron atoms. Therefore, the hydride H(b)(-) (bridged to Fe(p) and Fe(d)) and eta(2)-H(2) at Fe(p) or Fe(d) most possibly play key roles in the dihydrogen reversible oxidation at the [FeFe](H) active center. This suggested way of H(2) formation/splitting is reminiscent of the mechanism of [NiFe] hydrogenases and therefore would unify the mechanisms of the two related enzymes.  相似文献   

7.
An X-ray crystallographic refinement of the H-cluster of [FeFe]-hydrogenase from Clostridium pasteurianum has been carried out to close-to atomic resolution and is the highest resolution [FeFe]-hydrogenase presented to date. The 1.39 A, anisotropically refined [FeFe]-hydrogenase structure provides a basis for examining the outstanding issue of the composition of the unique nonprotein dithiolate ligand of the H-cluster. In addition to influencing the electronic structure of the H-cluster, the composition of the ligand has mechanistic implications due to the potential of the bridge-head gamma-group participating in proton transfer during catalysis. In this work, sequential density functional theory optimizations of the dithiolate ligand embedded in a 3.5-3.9 A protein environment provide an unbiased approach to examining the most likely composition of the ligand. Structural, conformational, and energetic considerations indicate a preference for dithiomethylether as an H-cluster ligand and strongly disfavor the dithiomethylammonium as a catalytic base for hydrogen production.  相似文献   

8.
The periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenbourough) is an all Fe-containing hydrogenase. It contains two ferredoxin type [4Fe-4S] clusters, termed the F clusters, and a catalytic H cluster. Recent X-ray crystallographic studies on two Fe hydrogenases revealed that the H cluster is composed of two sub-clusters, a [4Fe-4S] cluster ([4Fe-4S](H)) and a binuclear Fe cluster ([2Fe](H)), bridged by a cysteine sulfur. The aerobically purified D. vulgaris hydrogenase is stable in air. It is inactive and requires reductive activation. Upon reduction, the enzyme becomes sensitive to O(2), indicating that the reductive activation process is irreversible. Previous EPR investigations showed that upon reoxidation (under argon) the H cluster exhibits a rhombic EPR signal that is not seen in the as-purified enzyme, suggesting a conformational change in association with the reductive activation. For the purpose of gaining more information on the electronic properties of this unique H cluster and to understand further the reductive activation process, variable-temperature and variable-field M?ssbauer spectroscopy has been used to characterize the Fe-S clusters in D. vulgaris hydrogenase poised at different redox states generated during a reductive titration, and in the CO-reacted enzyme. The data were successfully decomposed into spectral components corresponding to the F and H clusters, and characteristic parameters describing the electronic and magnetic properties of the F and H clusters were obtained. Consistent with the X-ray crystallographic results, the spectra of the H cluster can be understood as originating from an exchange coupled [4Fe-4S]-[2Fe] system. In particular, detailed analysis of the data reveals that the reductive activation begins with reduction of the [4Fe-4S](H) cluster from the 2+ to the 1+ state, followed by transfer of the reducing equivalent from the [4Fe-4S](H) subcluster to the binuclear [2Fe](H) subcluster. The results also reveal that binding of exogenous CO to the H cluster affects significantly the exchange coupling between the [4Fe-4S](H) and the [2Fe](H) subclusters. Implication of such a CO binding effect is discussed.  相似文献   

9.
10.
Heterodisulfide reductase (Hdr) from methanogenic archea is an iron-sulfur protein that catalyzes the reversible two-electron reduction of the mixed disulfide CoM-S-S-CoB to the thiol coenzymes, coenzyme M (CoM-SH) and coenzyme B (CoB-SH). It is unusual that this enzyme uses an iron-sulfur cluster to mediate disulfide reduction in two one-electron steps via site-specific cluster chemistry. Upon half-reaction of the oxidized enzyme with CoM-SH in the absence of CoB-SH, an iron-based paramagnetic intermediate is formed, designated CoM-Hdr. In this Communication we report 57Fe pulsed ENDOR at two very different frequencies, 9 and 94 GHz, that identify the iron sites of CoM-Hdr. We find direct evidence for a [4Fe-4S]3+ cluster, and we determine the sign of the 57Fe hyperfine couplings. The 57Fe isotropic hfc values suggest a complex interaction between the cluster and the CoM-SH substrate.  相似文献   

11.
To explore the possibility that the active center of the di-iron hydrogenases, the [FeFe] H subcluster, can serve by itself as an efficient hydrogen-producing catalyst, we perform comprehensive calculations of the catalytic properties of the subcluster in vacuo using first principles density functional theory. For completeness, we examine all nine possible geometrical isomers of the Fe(II)Fe(I) active-ready state and report in detail on the relevant ones that lead to the production of H 2. These calculations, carried out at the generalized gradient approximation level, indicate that the most efficient catalytic site in the isolated [FeFe] H subcluster is the Fe d center distal (d) to the [4Fe-4S] H cluster; the other iron center site, the proximal Fe p, also considered in this study, has much higher energy barriers. The pathways with the most favorable kinetics (lowest energy barrier to reaction) proceed along configurations with a CO ligand in a bridging position. The most favorable of these CO-bridging pathways start from isomers where the distal CN (-) ligand is in up position, the vacancy V in down position, and the remaining distal CO is either cis or trans with respect to the proximal CO. These isomers, not observed in the available enzyme X-ray structures, are only marginally less stable than the most stable nonbridging Fe d-CO-terminal isomer. Our calculations indicate that this CO-bridging CN-up isomer has a small barrier to production of H 2 that is compatible with the observed rate for the enzyme. These results suggest that catalysis of H 2 production could proceed on this stereochemically modified [FeFe] H subcluster alone, thus offering a promising target for functional bioinspired catalyst design.  相似文献   

12.
The regulatory H2-sensing [NiFe] hydrogenase of the beta-proteobacterium Ralstonia eutropha displays an Ni-C "active" state after reduction with H2 that is very similar to the reduced Ni-C state of standard [NiFe] hydrogenases. Pulse electron nuclear double resonance (ENDOR) and four-pulse ESEEM (hyperfine sublevel correlation, HYSCORE) spectroscopy are applied to obtain structural information on this state via detection of the electron-nuclear hyperfine coupling constants. Two proton hyperfine couplings are determined by analysis of ENDOR spectra recorded over the full magnetic field range of the EPR spectrum. These are associated with nonexchangeable protons and belong to the beta-CH(2) protons of a bridging cysteine of the NiFe center. The signals of a third proton exhibit a large anisotropic coupling (Ax = 18.4 MHz, Ay = -10.8 MHz, Az = -18 MHz). They disappear from the 1H region of the ENDOR spectra after exchange of H2O with 2H2O and activation with 2H2 instead of H2 gas. They reappear in the 2H region of the ENDOR and HYSCORE spectra. Based on a comparison with the spectroscopically similar [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F, for which the g-tensor orientation of the Ni-C state with respect to the crystal structure is known (Foerster et al. J. Am. Chem. Soc. 2003, 125, 83-93), an assignment of the 1H hyperfine couplings is proposed. The exchangeable proton resides in a bridging position between the Ni and Fe and is assigned to a formal hydride ion. After illumination at low temperature (T = 10 K), the Ni-L state is formed. For the Ni-L state, the strong hyperfine coupling observed for the exchangeable hydrogen in Ni-C is lost, indicating a cleavage of the metal-hydride bond(s). These experiments give first direct information on the position of hydrogen binding in the active NiFe center of the regulatory hydrogenase. It is proposed that such a binding situation is also present in the active Ni-C state of standard hydrogenases.  相似文献   

13.
N(2) binds to the active-site metal cluster in the nitrogenase MoFe protein, the FeMo-cofactor ([7Fe-9S-Mo-homocitrate-X]; FeMo-co) only after the MoFe protein has accumulated three or four electrons/protons (E(3) or E(4) states), with the E(4) state being optimally activated. Here we study the FeMo-co (57)Fe atoms of E(4) trapped with the α-70(Val→Ile) MoFe protein variant through use of advanced ENDOR methods: 'random-hop' Davies pulsed 35 GHz ENDOR; difference triple resonance; the recently developed Pulse-Endor-SaTuration and REcovery (PESTRE) protocol for determining hyperfine-coupling signs; and Raw-DATA (RD)-PESTRE, a PESTRE variant that gives a continuous sign readout over a selected radiofrequency range. These methods have allowed experimental determination of the signed isotropic (57)Fe hyperfine couplings for five of the seven iron sites of the reductively activated E(4) FeMo-co, and given the magnitude of the coupling for a sixth. When supplemented by the use of sum-rules developed to describe electron-spin coupling in FeS proteins, these (57)Fe measurements yield both the magnitude and signs of the isotropic couplings for the complete set of seven Fe sites of FeMo-co in E(4). In light of the previous findings that FeMo-co of E(4) binds two hydrides in the form of (Fe-(μ-H(-))-Fe) fragments, and that molybdenum has not become reduced, an 'electron inventory' analysis assigns the formal redox level of FeMo-co metal ions in E(4) to that of the resting state (M(N)), with the four accumulated electrons residing on the two Fe-bound hydrides. Comparisons with earlier (57)Fe ENDOR studies and electron inventory analyses of the bio-organometallic intermediate formed during the reduction of alkynes and the CO-inhibited forms of nitrogenase (hi-CO and lo-CO) inspire the conjecture that throughout the eight-electron reduction of N(2) plus 2H(+) to two NH(3) plus H(2), the inorganic core of FeMo-co cycles through only a single redox couple connecting two formal redox levels: those associated with the resting state, M(N), and with the one-electron reduced state, M(R). We further note that this conjecture might apply to other complex FeS enzymes.  相似文献   

14.
A series of asymmetrically disubstituted models of the active site of [FeFe]-hydrogenase, (mu-pdt)[Fe(CO) 2PMe 3][Fe(CO) 2NHC] (pdt = 1,3-propanedithiolate, NHC = IMes, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene IMes ( 1), IMesMe, 1-methyl,3-(2,4,6-trimethylphenyl)imidazol-2-ylidene ( 2) or IMe, 1,3-bis(methyl)imidazol-2-ylidene ( 3)), have been synthesized and characterized. The one-electron oxidation of these complexes to generate mixed valent models of the H ox state of [FeFe]-hydrogenase, such as the previously reported (mu-pdt)(mu-CO)[Fe(CO) 2PMe 3][Fe(CO)IMes] (+) ( 1 ox ) (Liu, T.; Darensbourg, M. Y. J. Am. Chem. Soc. 2007, 129, 7008-7009) has been examined to explore the steric and electronic effects of different N-atom substituents on the stability and structure of the mixed valent cations. The differences in spectroscopic properties, structures, and relative stabilities of 1 ox , (mu-pdt)[Fe(CO) 2PMe 3][Fe(CO) 2IMesMe] (+) ( 2 ox ), and (mu-pdt)[Fe(CO) 2PMe 3]-[Fe(CO) 2IMe] (+) ( 3 ox ) are discussed in the context of both experimental and theoretical data. Of the three derivatives, only that with greatest steric bulk on the NHC ligand, 1 ox , shows a clear indication of a mu-CO by solution nu(CO) IR and yields to crystallization as a rotated form, commensurate with the two-Fe subsite of H ox. In addition, the reactivity of the complexes with extrinsic CO to form CO adducts and/or exchange with (13)CO is explored by experiment and by using density-functional theory calculations.  相似文献   

15.
In this work, we employ density functional theory to assign vibrational signatures of [FeFe]-hydrogenase intermediates to molecular structures. For this purpose, we perform an exhaustive analysis of structures and harmonic vibrations of a series of CN and CO containing model clusters of the [FeFe]-hydrogenase enzyme active site considering also different charges, counterions, and solvents. The pure density functional BP86 in combination with a triple-ζ polarized basis set produce reliable molecular structures as well as harmonic vibrations. Calculated CN and CO stretching vibrations are analyzed separately. Scaled vibrational frequencies are then applied to assign intermediates in [FeFe]-hydrogenase's reaction cycle. The results nicely complement the previous studies of Darensbourg and Hall, and Zilberman et al. The infrared spectrum of the H(ox) form is in very good agreement with the calculated spectrum of the Fe(I)Fe(II) model complex featuring a free coordination site at the distal Fe atom, as well as, with the calculated spectra of the complexes in which H(2) or H(2)O are coordinated at this site. The spectrum of H(red) measured from Desulfovibrio desulfuricans is compatible with a mixture of a Fe(I)Fe(I) species with all terminal COs, and a Fe(I)Fe(I) species with protonated dtma ligand, while the spectrum of H(red) recently measured from Chlamydomonas reinhardtii is compatible with a mixture of a Fe(I)Fe(I) species with a bridged CO, and a Fe(II)Fe(II) species with a terminal hydride bound to the Fe atom.  相似文献   

16.
17.
Greco C  De Gioia L 《Inorganic chemistry》2011,50(15):6987-6995
Recent advances aimed at modeling the chemistry of the active site of [FeFe]-hydrogenases (the H-cluster, composed by a catalytic Fe(2)S(2) subcluster and an Fe(4)S(4) portion) have led to the synthesis of binuclear coordination compounds containing a noninnocent organophosphine ligand [2,3-bis(diphenylphosphino)maleic anhydride, bma] that is able to undergo monoelectron reduction, analogously to the tetranuclear Fe(4)S(4) subcluster portion of the H-cluster. However, such a synthetic model was shown to feature negligible electronic communication between the noninnocent ligand and the remaining portion of the cluster, at variance with the enzyme active site. Here, we report a theoretical investigation that shows why the electron transfer observed in the enzyme upon protonation of the catalytic Fe(2)S(2) subsite cannot take place in the bma-containing cluster. In addition, we show that targeted modifications of the bma ligand are sufficient to restore the electronic communication within the model, such that electron density can be more easily withdrawn from the noninnocent ligand, as a result of protonation of the iron centers. Similar results were also obtained with a ligand derived from cobaltocene. The relevance of our findings is discussed from the perspective of biomimetic reproduction of proton reduction to yield molecular hydrogen.  相似文献   

18.
X- and Q-band EPR and ENDOR spectroscopy was used to study the structure of a series of heteroleptic and homoleptic copper bis(oxazoline) complexes, based on the (-)-2,2'-isopropylidenebis[(4S)-4-phenyl-2-oxazoline] ligand and bearing different counterions (chloride versus triflate); labelled [Cu(II)()]. The geometry of the two heteroleptic complexes, [Cu(II)()] and [Cu(II)()], depended on the choice of counterion. Formation of the homoleptic complex was only evident when the Cu(II)(OTf)(2) salt was used (Cu(II)(Cl)(2) inhibited the transformation from heteroleptic to homoleptic complexes). The hyperfine and quadrupole parameters for the surrounding ligand nuclei were determined by ENDOR. Well resolved (19)F and (1)H couplings confirmed the presence of both coordinated water and TfO(-) counterions in [Cu()].  相似文献   

19.
20.
The paramagnetic aryl-alkynyl complexes [Mo(C≡CAr)(dppe)(η-C(7)H(7))](+) (dppe = Ph(2)PCH(2)CH(2)PPh(2); Ar = C(6)H(5), [1](+); C(6)D(5), [2](+); C(6)H(4)-4-F, [3](+); C(6)H(4)-4-Me, [5](+)) and [Mo(C≡CBu(t))(dppe)(η-C(7)H(7))](+) [4](+), have been investigated in a combined EPR and ENDOR study. Direct experimental evidence for the delocalisation of unpaired spin density over the framework of an aryl-alkynyl ligand has been obtained. The X-band solution EPR spectrum of the 4-fluoro derivative, [3](+), exhibits resolved hyperfine coupling to the remote para position of the aryl group [a(iso)((19)F) = 4.5 MHz, (1.6 G)] in addition to couplings attributable to (95/97)Mo, (31)P and (1)H of the C(7)H(7) ring. A full analysis of the (1)H ENDOR spectra is restricted by the low g anisotropy of the system which prevents the use of orientation selection. However, inter-comparison of the (1)H cw-ENDOR frozen solution spectra of [1](+), [2](+), [4](+) and [5](+), combined with spectral simulation informed by calculated values derived from DFT investigations, has facilitated estimation of the experimental a(iso)((1)H) hyperfine couplings of [1](+) including the ortho, ±3.7 MHz (±1.3 G) and para, ±3.9 MHz (±1.4 G) positions of the C(6)H(5) substituent of the aryl-alkynyl ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号