首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
[reaction: see text] The palladium-catalyzed coupling of aryl iodides and arenesulfinates provides a simple and extremely efficient new route to unsymmetrical diaryl sulfones, usually isolated in high yield. The reaction tolerates a variety of functionalized aryl iodides, including those containing ether, ester, and nitro groups. The best results have been obtained by using Pd(2)(dba)(3), Xantphos, Cs(2)CO(3), and (n)Bu(4)NCl in toluene at 80 degrees C.  相似文献   

2.
Tetrakis(dimethylamino)ethylene (TDAE)/cat. PdCl(2)(PhCN)(2)-promoted reductive coupling of aryl bromides having either electron-donating or electron-withdrawing groups on their para- and/or meta-position proceeded smoothly to afford the corresponding biaryls in good to excellent yields. Notably, TDAE is such a mild reductant that easily reducible groups, such as carbonyl and nitro groups, are tolerate. A similar reductive coupling of ortho-substituted aryl bromides did not occur at all. The proper choice of palladium catalysts is essential for the reductive coupling; thus, PdCl(2)(PhCN)(2), PdCl(2)(MeCN)(2), Pd(hfacac)(2), Pd(2)(dba)(3), PdCl(2), and Pd(OAc)(2) were used successively for this reaction, but phosphine-ligated palladium catalysts such as Pd(PPh(3))(4), PdCl(2)(PPh(3))(2), and Pd(dppp) did not promote the reaction. The reductive coupling did not occur with nickel catalysts such as NiBr(2), NiCl(2)(bpy), and Ni(acac)(2). The TDAE/cat. palladium-promoted reductive coupling of aryl halides having electron-withdrawing groups took place more efficiently than that of aryl halides substituted with electron-donating groups. A plausible mechanism of TDAE/cat. palladium-promoted reaction is discussed.  相似文献   

3.
A new polystyrene anchored Pd(II) azo complex has been synthesized and characterized. The present Pd(II) azo complex behaves as a very efficient heterogeneous catalyst in the Suzuki coupling and Sonogashira coupling reaction in water medium. Aryl halides, coupled with phenylboronic acids (Suzuki-Miyaura reaction) or terminal alkyne (Sonogashira reaction), smoothly afford the corresponding cross-coupling products in excellent yields (83-100% yield for Suzuki reaction and 68-96% yield for Sonogashira reaction of aryl halides) under phosphine-free reaction conditions in the presence of polystyrene anchored Pd(II) azo complex catalyst in water medium. Furthermore, the catalyst has shown good thermal stability and recyclability. This polymer-supported Pd(II) catalyst could be easily recovered by simple filtration of the reaction mixture and reused for more than six consecutive trials without a significant loss of its catalytic activity.  相似文献   

4.
The palladium-catalyzed reaction of sulfinic acid salts with a wide variety of aryl and vinyl halides or triflates provides unsymmetrical diaryl sulfones and aryl vinyl sulfones in good to excellent yields. The reaction is strongly influenced by the presence of nBu4NCl, and the use of Xantphos, a rigid bidentate ligand with a wide natural bite angle, was found to be crucial for the success of the reaction. With neutral, electron-rich, and electron-poor aryl iodides best results were obtained by using Pd2(dba)3, Xantphos, Cs2CO3, and nBu4NCl, in toluene at 80 degrees C. Two general procedures were employed with aryl bromides and triflates: sodium p-toluenesulfinate, Pd2(dba)3, Xantphos, Cs2CO3, 120 degrees C, in toluene with nBu4NCl (procedure A: neutral, electron-rich, and slightly electron-poor aryl bromides or triflates) and without nBu4NCl (procedure B: electron-poor aryl bromides or triflates). With vinyl triflates best results were obtained at 60 degrees C omitting nBu4NCl.  相似文献   

5.
A new palladium catalyst (DAPCy) made from Pd(OAc)(2) and commercially available, inexpensive dicyclohexylamine has been developed for the Suzuki coupling reaction of aryl bromides with boronic acids to give the coupling products in good to high yields. The air-stable catalyst was characterized and well-defined by X-ray crystallography. A catalytic system involving DAPCy in dioxane demonstrates a temperature-dependent reactivity toward aryl bromides with different electronic substituents, and selectively couples electron-deficient aryl bromides with boronic acids over electron-rich ones at room temperature. Another catalytic system employing DAPCy in EtOH provides a general and convenient method to prepare biaryls from aryl bromides and boronic acids with a broad range of functional groups at room temperature and under aerobic conditions.  相似文献   

6.
Liu J  Deng Y  Wang H  Zhang H  Yu G  Wu B  Zhang H  Li Q  Marder TB  Yang Z  Lei A 《Organic letters》2008,10(13):2661-2664
Pd(OAc)(2) is an efficient catalyst precursor for Negishi coupling in the presence of Bu(4)NBr. Secondary and primary alkylzinc reagents with beta-H and arylzinc reagents all reacted with aryl iodides at temperatures as low as -20 degrees C, giving moderate to good yields. One example of coupling between alkynylzinc reagents and aryl iodides was tested and the yield was good. Preliminary kinetic studies indicated that the process involved PdNPs as the active catalytic species.  相似文献   

7.
Palladium(II) complexes of aryl dithiolates and wide-bite-angle diphosphines Xantphos and dppf have been developed as efficient catalysts in Suzuki and Suzuki carbonylation reactions. The catalytic activity of these highly stable, discrete and charged complexes was investigated in Heck coupling reactions of styrene and a variety of aryl bromides. Under optimized reaction conditions these palladium complexes showed excellent activity with high turnover number (6 × 106) and high turnover frequency (4 × 105 h−1). The effect of bite angle of diphosphines on the catalytic activity of the complexes [Pd2(PP)2(SC12H8S)]2(OTf)4 followed the trend PP = Xantphos > dppf > dppe as the order of their bite angles. The catalyst could be reused, and after three cycles the formation of significant amount of Pd nanoparticles was noticed, which were characterized using powder X-ray diffraction, energy-dispersive X-ray analysis and transmission electron microscopy. The high catalytic activity has been attributed to the Pd nanoparticles.  相似文献   

8.
Pd/P(t-Bu)(3) serves as an unusually reactive catalyst for Stille reactions of aryl chlorides and bromides, providing solutions to a number of long-standing challenges. An unprecedented array of aryl chlorides can be cross-coupled with a range of organotin reagents, including SnBu(4). Very hindered biaryls (e.g., tetra-ortho-substituted) can be synthesized, and aryl chlorides can be coupled in the presence of aryl triflates. The method is user-friendly, since a commercially available complex, Pd(P(t-Bu)(3))(2), is effective. Pd/P(t-Bu)(3) also functions as an active catalyst for Stille reactions of aryl bromides, furnishing the first general method for room-temperature cross-couplings.  相似文献   

9.
A new catalyst system for the enantioselective alpha-arylation of ketones is reported. This catalyst, prepared from Pd(2)(dba)(3) and a bulky dialkylphosphino-binaphthyl ligand, is able to effect the asymmetric arylation of ketone enolates with aryl bromides utilizing NaO(t)()Bu as base. These new catalysts enjoy much higher reactivity than previous systems; arylation reactions could be effected at room temperature with only 2 mol % of the Pd catalyst. The coupling of alpha-alkyl-alpha'-protected cyclopentanones proceeded in high yield, and the resulting quaternary stereogenic center was installed in up to 94% ee.  相似文献   

10.
Yin J  Buchwald SL 《Organic letters》2000,2(8):1101-1104
[formula: see text] The first general intermolecular C-N bond-forming reactions between aryl halides and amides were realized using a palladium catalyst with Xantphos as the ligand. Aryl triflates, carbamates, and sulfonamides are also viable substrates for the amidations, which proceed at 45-110 degrees C with 1-4 mol% of Pd catalyst in 66-99% yields and exhibit good functional group compatibility.  相似文献   

11.
Pd-catalyzed multifold (2-, 3-, and 4-fold) carbon-sulfur cross-coupling reaction of indium tri(organothiolates) with polybromonated aromatic and heteroaromatic compounds was developed in a one-pot procedure. Both 2,5-dibromopyridine and 2,6-dibromopyridine reacted with indium tri(organothiolates) (0.68 equiv) in the presence of 4 mol % of Pd(OAc)(2), 4.2 mol % of Xantphos, and 1 equiv of diisopropylethylamine (DIPEA), producing disulfides in good to excellent yields. These results indicate that indium tri(organothiolates) transfer all three alkyl- or arylthio groups attached to indium metal to electrophilic coupling partners. Indium tri(organothiolates) derived from alkyl thiol having a low boiling point, such as n-propyl, isopropyl, and tert-butyl thiol, acted as good nucleophilic coupling partners. In addition, indium tri(arylthiolates) derived from aryl thiols possessing an electron-withdrawing or -donating group on the aromatic ring participated well in the Pd-catalyzed multifold carbon-sulfur cross-coupling reaction. 4,4'-Dibromo-1,1'-biphenyl, 9,10-dibromoanthracene, 2,4-dibromoanisole, 2,7-dibromo-9,9-dimethylfluorene, 3,4-dibromothiophene, 2,3-dibromothiophene, 2,2'-bithiophene, 1,3,5-tribromobenzene, and 1,2,4,5-tetrabromobenzene were converted smoothly to the corresponding di-, tri-, and tetrasulfides.  相似文献   

12.
Yeung PY  Chung KH  Kwong FY 《Organic letters》2011,13(11):2912-2915
A palladium-catalyzed decarboxylative coupling of potassium cyanoacetate with aryl bromides and chlorides is described. The reaction conditions feature the absence of additional strong inorganic bases and provide ester functional group tolerance. With Pd(dba)(2) and XPhos ligand as the catalyst system, α-diaryl nitriles can be obtained in good yields.  相似文献   

13.
The scope and limitations of direct arylation of fluorinated aromatics with aryl sulfonates was examined. Pd(OAc)(2), in the presence of MePhos and KOAc in THF, efficiently catalyzed the direct arylation of fluoro aromatics with aryl triflates under ambient conditions. Sterically hindered triflates and heteroaryl triflates gave good to excellent yields of the cross coupled products using a modified catalyst system which involves Pd(OAc)(2)-RuPhos at 100 °C. The direct arylation of electron deficient arenes with aryl mesylates is also established using Pd(OAc)(2)-SPhos as the catalyst in toluene-(t)BuOH at 120 °C.  相似文献   

14.
The palladium-catalyzed tandem arylation of O-homoallylhydroxylamines with 2 equiv of aryl bromides was examined. With Pd2(dba)3 (1 mol %) as the catalyst, Xantphos (2 mol %) as the ligand, and NaOt-Bu as the base, the reactions of O-homoallylhydroxylamines with aryl bromides via sequential N-arylation/cyclization/C-arylation in toluene afforded the corresponding N-aryl-3-arylmethylisoxazolidines in good yields with excellent diastereoselectivity.  相似文献   

15.
Palladium-catalyzed reactions of aryl bromides with various olefins involving Pd(II)/diazabutadiene (DAB-R) systems have been investigated. The scope of a coupling process using Pd(II) sources and an α-diimine as ligand in the presence of Cs2CO3 as base was tested using various substrates. The Pd(OAc)2/DAB-Cy (1, DAB-Cy=1,4-dicyclohexyl-diazabutadiene) system presents the highest activity with respect to electron-neutral and electron-deficient aryl bromides in coupling with electron rich olefins. The synthesis and X-ray characterization of a Pd(II)-diazabutadiene ligand is reported. Extensive optimization experiments showed that another Pd(II) source, Pd(acac)2 (acac=acetylacetonate), proved to activate aryl bromides at high temperatures, low catalyst loadings when the appropriate concentration of nBu4NBr additive was employed. The effect of the DAB-Cy ligand is important at very low catalyst loadings and high temperatures. Pd(acac)2 and Pd(acac)2/DAB-Cy precatalysts were very effective for the arylation of various olefins with aryl bromides with respect to reaction rate, catalyst loadings, and functional group tolerance.  相似文献   

16.
The Mizoroki–Heck reactions of aryl halides catalyzed by palladium nanoparticles generated in situ from a simple allyl palladium precursor were investigated in argon. The high turnover numbers of 9,300,000 have been obtained with 4-bromobenzonitrile as substrate and 3500 with 4-nitrochlorobenzene. When the reaction was performed in air, a low yield was given, but it could be improved obviously by addition of PEG-400. The main reason was that inactive Pd(II) species could be rapidly reduced to the active Pd(0) by PEG. In other word, the existence of air and PEG led to a synergistic effect which the oxidation by air prevents the aggregation of Pd NPs and the reduction by PEG maintains the high activity of Pd(0) species.  相似文献   

17.
A new family of phosphine ligands bearing a bulky carbazolyl scaffold is described. With the combination of ligand 2a and Pd(OAc)(2), difficult tri-ortho-substituted biaryl couplings are accomplished smoothly. In particular, the catalyst loading as low as 0.02 mol% of Pd for non-activated 2,6-disubstituted aryl chloride coupling can be achieved.  相似文献   

18.
The designs of robust natural polymer based catalysts are important for catalytic systems in the view of industrial purposes and green chemistry. In this study, a new air and moisture stable robust starch‐based Pd(II) catalyst was designed and characterized with different analytical techniques. Catalytic behavior of the prepared robust palladium(II) catalyst was investigated in the Suzuki coupling reactions of aryl iodides, aryl bromides and aryl chlorides with phenyl boronic acid under microwave irradiation using very short reaction time. Sustainability and reusability of the catalyst was also explored under benign conditions. As a result of the catalytic tests, the green catalyst gave excellent biphenyl yields, TONs and TOFs with very low catalyst loading. More importantly, the robust catalyst has showed that it can be reused several times without important loses from its activity in the coupling reactions. The study showed that the robust starch‐based Pd(II) catalyst had more advantages than other catalysts reported in the literature due to its economic, sustainable, thermal durable, environmentally friendly and practice properties.  相似文献   

19.
Nucleophilic N-heterocyclic carbenes have been conveniently used as catalyst modifiers in amination reactions involving aryl chlorides, aryl bromides, and aryl iodides with various nitrogen-containing substrates. The scope of a coupling process using a Pd(0) or Pd(II) source and an imidazolium salt in the presence of a base, KO(t)Bu or NaOH, was tested using various substrates. The Pd(2)(dba)(3)/IPr.HCl (1, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) system presents the highest activity with respect to electron-neutral and electron-rich aryl chlorides. The ligand is also effective for the synthesis of benzophenone imines, which can be easily converted to the corresponding primary amines by acid hydrolysis. Less reactive indoles were converted to N-aryl-substituted indoles using as supporting ligand the more donating SIPr.HCl (5, SIPr = 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene). The Pd(OAc)(2)/SIPr.HCl/NaOH system is efficient for the N-arylation of diverse indoles with aryl bromides. The general protocol developed has been applied successfully to the synthesis of a key intermediate in the synthesis of an important new antibiotic. Mechanistically, palladium-to-ligand ratio studies strongly support an active species bearing one nucleophilic carbene ligand.  相似文献   

20.
The Suzuki coupling of aryl chlorides with boronic acids using a ferrocene-containing Pd(II)–diimine complex as catalyst, in aqueous media, under microwave heating is reported. A small amount of the catalyst (0.1%) was found to be highly effective for coupling unactivated aryl chlorides with boronic acids to form sterically hindered ortho-substituted biaryls. The same catalyst also enabled the coupling of aryl bromides and iodides with various boronic acids in very high yields. The catalyst is air stable and the catalytic reaction can be completed in 15 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号