首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and highly sensitive method called thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of 4-nonylphenol (NP) and 4-tert.-octylphenol (OP) in water samples, is described. NP and OP in samples are extracted from water samples and concentrated by the stir bar sorptive extraction (SBSE) technique. A stir bar coated with polydimethylsiloxane (PDMS) is added to a 2.0 ml water sample and stirring is carried out for 60 min at room temperature (25 °C) in a headspace vial. Then the extract is high sensitively analyzed by TD-GC-MS without any derivatization step. The optimum SBSE conditions are realized at an extraction time of 60 min. The detection limits are 0.02 ng ml−1 for NP and 0.002 ng ml−1 for OP. The method shows good linearity over the concentration range of 0.1-10 ng ml−1 for NP and 0.01-10 ng ml−1 for OP, and the correlation coefficients are higher than 0.999. The average recoveries of NP and OP are higher than 97% (R.S.D.: 3.6-6.2%) with correction using the added surrogate standards, 4-(1-methyl) octylphenol-d5 and deuterium 4-tert.-octylphenol. This simple, accurate, sensitive and selective analytical method may be used in the determination of trace amounts of NP and OP in tap and river water samples.  相似文献   

2.
A new microextraction technique based on ionic liquid solid-phase microextraction (IL-SPME) was developed for determination of trace chlorophenols (CPs) in landfill leachate. The synthesized ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]), was coated onto the spent fiber of SPME for extraction of trace CPs. After extraction, the absorbed analytes were desorbed and quantified using gas chromatography–mass spectrometry (GC/MS). The term of the proposed method is as ionic liquid-coated of solid-phase microextraction combined with gas chromatography–mass spectrometry (IL-SPME-GC/MS). No carryover effect was found, and every laboratory-made ionic liquids-coated-fiber could be used for extraction at least eighty times without degradation of efficiency. The chlorophenols studied were 2,4-dichlorophenol (2,4-DP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP). The best results of chlorophenols analysis were obtained with landfill leachate at pH 2, headspace extraction for 4 min, and thermal desorption with the gas chromatograph injector at 240 °C for 4 min. Linearity was observed from 0.1 to 1000 μg L−1 with relative standard deviations (RSD) less than 7% and recoveries were over 87%. The limit of detection (LOD) for pentachlorophenol was 0.008 μg L−1. The proposed method was tested by analyzing landfill leachate from a sewage farm. The concentrations of chlorophenols were detected to range from 1.1 to 1.4 μg L−1. The results demonstrate that the IL-SPME-GC/MS method is highly effective in analyzing trace chlorophenols in landfill leachate.  相似文献   

3.
A method for the trace analysis of methylmercury (MeHg) and Hg(II) in water sample was developed, which involved stir bar sorptive extraction (SBSE) with in situ alkylation with sodium tetraethylborate and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS). The limits of quantification of MeHg and Hg(II) are 20 and 10 ng L−1 (Hg), respectively. The method shows good linearity and the correlation coefficients are higher than 0.999. The average recoveries of MeHg and Hg(II) in tap or river water sample are 102.1-104.3% (R.S.D.: 7.0-8.9%) and 105.3-106.2% (R.S.D.: 7.4-8.5%), respectively. This simple, accurate, sensitive, and selective analytical method may be used in the determination of trace amounts of MeHg and Hg(II) in tap and river water samples.  相似文献   

4.
Two solid-phase extraction (SPE) methods, based on hydrophobic and selective (antibody-antigen) interactions, have been established and evaluated as clean-up methods prior the immunochemical analysis of 2,4,6-trichlorophenol (2,4,6-TCP) in urine samples. Without a clean-up method the extent of interferences caused by the urine matrix in the ELISA [R. Galve, M. Nichkova, F. Camps, F. Sanchez-Baeza, M.-P. Marco, Anal. Chem. 74 (2002) 468] varies depending on individual urine samples and accurate measurements are only possible when 2,4,6-TCP concentration levels are higher than 40 μg L−1. Both sample preparation methods improve detectability of the immunochemical method getting rid of the variability due to the intrinsic individual differences within the urine samples. Even though, the immunosorbent (IS)-SPE method developed has proven to be a superior sample preparation method eliminating completely matrix effects caused by both, non-hydrolyzed (NH) and hydrolyzed urine samples. The LOD reached by the C18-SPE-ELISA method (∼4 μg L−1 for free and total chlorophenols) is sufficient for exposure assessment of the occupationally exposed population. However, the detectability (0.66 and 0.83 μg L−1 in NH and hydrolyzed urine samples, respectively) accomplished by the IS-SPE-ELISA allows also biomonitoring potential exposure of non-occupationally exposed groups. Moreover, the specificity of the IS-SPE procedure can be modulated to provide a group-specific (9 chlorophenols and 2 bromophenols are extracted with an efficacy superior to 85%) or a more selective protocol (only 2,3,4,6-TtCP, 2,4,6-TCP are extracted with a recovery superior to 80% and 2,4,6-tribromophenol with a 70% recovery). On the other hand, the IS-SPE extracts produce cleaner chromatograms allowing quantitation by GC-ECD (or GC-MS) after toluene extraction and derivatization with a LOD near 0.1 μg L−1 in NH and hydrolyzed urine samples. The IS-SPE-ELISA method has been validated with GC-ECD using spiked and real urine samples. This study also provides evidences of the general exposure of the population to organochlorinated and organobrominated substances. Measurable levels of 2,4,6-TCP, 2,4,5-TCP, 2,3,4,6-TtCP, 2,4,6-TBP and 2,4-DBP have been detected in some of the samples used in this study.  相似文献   

5.
Xu J  Wu X  Yan W  Cai R  Lin Z 《Talanta》2006,70(2):323-329
In this work, a new kinetic method was proposed for quantification phenoxyl radicals generated in enzyme reaction. Instead of direct detecting the spectral signals of phenoxyl radicals, a molecular probe, the reduced form of nicotinamide adenine dinucleotide (NADH), was employed to indicate the formation of phenoxyl free radicals. It was found that the reactions of NADH and phenoxyl radicals are very fast, but can be followed by using stopped-flow fast scanning spectrophotometric technique. The initial rate of accelerated-oxidation of NADH represents the reactivity of phenoxyl free radical, which is proportional in a certain range to the initial concentration of the parent chlorophenols of the radicals. With this method, the phenoxyl radicals generated in oxidation reaction of chlorophenols (2-CP; 4-CP; 2,4-DCP; 2,4,6-TCP and 2,3,4,6-Tetra-CP) with hydrogen peroxide, catalyzed by horseradish peroxidase, were investigated. The method is highly sensitive. Phenoxyl radicals generated from as low as 1 × 10−8 M 2,4-DCP, for example, can be readily detected with the proposed method. The results show that the reactivity of various phenoxyl radicals are in the following order: 2,4-DCP > 4-CP > 2-CP > 2,4,6-TCP > 2,3,4,6-Tetra-CP. A mechanism is proposed to explain the possible pathway of the probe reaction. The feasibility of this method was assessed by the determination of enzymatic generation of phenoxyl radicals in lake water samples.  相似文献   

6.
In this work an analytical procedure based on headspace solid-phase microextraction and gas chromatography coupled with mass spectrometry (HS-SPME–GC/MS) is proposed to determine chlorophenols with prior derivatization step to improve analyte volatility and therefore the decision limit (CCα). After optimization, the analytical procedure was applied to analyze river water samples. The following analytes are studied: 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TrCP), 2,3,4,6-tetrachlorophenol (2,4,6-TeCP) and pentachlorophenol (PCP). A D-optimal design is used to study the parameters affecting the HS-SPME process and the derivatization step. Four experimental factors at two levels and one factor at three levels were considered: (i) equilibrium/extraction temperature, (ii) extraction time, (iii) sample volume, (iv) agitation time and (v) equilibrium time. In addition two interactions between four of them were considered. The D-optimal design enables the reduction of the number of experiments from 48 to 18 while maintaining enough precision in the estimation of the effects. As every analysis took 1 h, the design is blocked in 2 days.  相似文献   

7.
R.M. Callejon  A.M. Troncoso  M.L. Morales   《Talanta》2007,71(5):1610-2097
A complete methodology for the determination of chloroanisoles and chlorophenols in cork material is proposed. The determination is accomplished by means of a previous liquid–solid extraction followed by stir bar sorptive extraction (SBSE) coupled to gas chromatography–mass spectrometry (GC–MS). Two different liquid–solid extraction experiments were conducted and eight compounds considered (2,6-dichloroanisole, 2,4-dichloroanisole, 2,4,6-trichloroanisole, 2,4,6-trichlorophenol, 2,3,4,6-tetrachloroanisole, 2,3,4,6-tetrachlorophenol, pentachloroanisole and pentachlorophenol). From the results obtained we can conclude that high volume extraction extending extraction time up to 24 h is the best choice if we have to release compounds from the inner surfaces of cork stoppers. Recovery percentages ranged from 51% for pentachloroanisole to 81% for 2,4-dichloroanisole. This method allows the determination of an array of compounds involved in cork taint at very low levels from 1.2 ng g−1 for 2,4,6-tricholoroanisole to 23.03 ng g−1 for 2,3,4,6-tetrachlorophenol.  相似文献   

8.
A method for mercury analysis and speciation in drinking water was developed, which involved stir bar sorptive extraction (SBSE) with in situ propyl derivatization and thermal desorption (TD)-GC-MS. Ten millilitre of tap water or bottled water was used. After a stir bar, pH adjustment agent and derivatization reagent were added, SBSE was performed. Then, the stir bar was subjected to TD-GC-MS. The detection limits were 0.01 ng mL(-1) (ethylmercury; EtHg), 0.02 ng mL(-1) (methylmercury; MeHg), and 0.2 ng mL(-1) (Hg(II) and diethylmercury (DiEtHg)). The method showed good linearity and correlation coefficients. The average recoveries of mercury species (n=5) in water samples spiked with 0.5, 2.0, and 6.0 ng mL(-1) mercury species were 93.1-131.1% (RSD<11.5%), 90.1-106.4% (RSD<7.8%), and 94.2-109.6% (RSD<8.8%), respectively. The method enables the precise determination of standards and can be applied to the determination of mercury species in water samples.  相似文献   

9.
Solid-phase microextraction by immersion (IS-SPME) and headspace mode (HS-SPME), together with stir bar sorptive extraction (SBSE), have been assayed in combination with gas chromatography-ion trap tandem mass spectrometry (MS/MS) for analysing 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, 2,4,6-tribromophenol, 2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole and 2,4,6-tribromoanisole in different liquid matrices. Once, the optimization of MS/MS fragmentation analysis was carried out, sample enrichment was performed using the three mentioned extraction methods, and comparison through the determination of linearity, and LOD and LOQs were carried out. SBSE and IS-SPME methods described enabled us to determine the target compounds at ng/l levels, concentrations lower than their olfactory threshold, which is not the case of HS-SPME. SBSE showed a higher concentration capability than both SPME techniques, especially when compared to the HS-SPME mode. Thus, SBSE should be the definitive technique to analyse halophenols and haloanisoles in aqueous matrices. SBSE has been also applied to nine aqueous matrices as different as tap water, wines or commercial lemon juice extract.  相似文献   

10.
The efficiency, reproducibility and sensitivity ofn-hexane and iso-octane extraction and of C18 reversed-phase adsorption for accumulation of 4-chloro-, 2,4-dichloro-, 2,4,5- and 2,4,6-trichloro-, 2,3,4,6-tetrachloro- and pentachlorophenol from aqueous solutions were compared. In extraction procedures the acetyl and pentafluorobenzoyl derivatives of chlorophenols were extracted from water. In adsorption procedure chlorophenols adsorbed on a Sep-Pak C18 cartridge were eluted with acetone and after that derivatized analogously.All three procedures were found to be applicable for an efficient trace enrichment of chlorophenols in water, the proper choice being dependent on the required sensitivity of the analysis. Lower detection limits of single compounds at 10 ng·1–1 levels were achieved by adsorption procedure owing to the more uniform and for most chlorophenols higher adsorption than extraction recoveries as well as owing to the possibility of treating larger volumes of water samples. The extraction procedure could be successfully applied to the concentrations of chlorophenols in water 1g·1–1.Owing to its higher efficiency and better sensitivity the C18 reversed-phase adsorption procedure was chosen as the more suitable one for the determination of chlorophenol levels in surface, ground and drinking waters. The conversion of chlorophenols accumulated from a water sample parallel to both acetyl and pentafluorobenzoyl derivatives and the analysis of both types of derivatives on two basically different gas Chromatographic columns were recommended for a more reliable identification and quantitation of the compounds analyzed.  相似文献   

11.
Elci L  Kolbe N  Elci SG  Anderson JT 《Talanta》2011,85(1):551-555
Solid-phase extraction (SPE) followed by derivatization and gas chromatography-atomic emission detection (GC-AED) was evaluated for the determination of five chlorophenols (CPs) in water samples. The derivatization was based on the esterification of phenolic compounds with ferrocenecarboxylic acid. The determination of the derivatized phenols was performed by GC-AED in the iron selective detection mode at 302 nm. The described method was tested on spiked water samples.The overall method gave detection limits of 1.6-3.7 ng L−1 and recoveries of 90.9-104.5% for the examined mono- to trichlorophenols in 10 mL water samples. The CPs extracted from a 10 mL water sample with SPE were concentrated into 100 μL of organic solvent, a preconcentration factor of 100. The method was applied to lake and tap water samples, and CP contents between 6 and 51 ng L−1 in lake water and between below the detection limit and 8 ng L−1 in tap water were found for different CPs. The method is quick, simple and gives excellent recoveries, limits of detection and standard deviations.  相似文献   

12.
A method for the simultaneous measurement of trace amounts of phenolic xenoestrogens, such as 2,4-dichlorophenol (2,4-DCP), 4-tert-butyl-phenol (BP), 4-tert-octylphenol (OP), 4-nonylphenol (NP), pentachlorophenol (PCP) and bisphenol A (BPA), in water samples was developed using stir bar sorptive extraction (SBSE) with in situ derivatization followed by thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS) analysis. The conditions for derivatization with acetic acid anhydride were investigated. A polydimethylsiloxane (PDMS)-coated stir bar and derivatization reagents were added to 10 ml of water sample and stirring was commenced for 10-180 min at room temperature (25 degrees C) in a headspace vial. Then, the extract was analyzed by TD-GC-MS. The optimum time for SBSE with in situ derivatization was 90 min. The detection limits of 2,4-DCP, BP, OP, NP, PCP and BPA were 2, 1, 0.5, 5, 2 and 2 pg ml(-1), respectively. The method showed good linearity over the concentration ranges of 10, 5, 2, 20, 10 and 10-1000 pg ml(-1) for 2,4-DCP, BP, OP, NP, PCP and BPA, respectively, and the correlation coefficients were higher than 0.99. The average recoveries of those compounds in river water samples were equal to or higher than 93.9% (R.S.D. <7.2%) with correction using the added surrogate standards. This simple, accurate, sensitive and selective method can be used in the determination of trace amounts of phenolic xenoestrogens in river water samples.  相似文献   

13.
Summary The efficiency and sensitivity of C18 reversed-phase adsorption of free chlorophenols and of n-hexane extraction of either free or acetylated chlorophenols from human urine were compared. All procedures were found to be efficient for the trace enrichment of 2,4-dichlorophenol, 2,4,6- and 2,4,5-trichlorophenols, 2,3,4,6- and 2,3,4,5-tetrachlorophenols and pentachlorophenol. The recoveries of chlorophenols from non-hydrolysed and acid hydrolysed urine samples were comparable. By treatment of 1 ml urine sample detection limits of 1–2 ng/ml were achieved, while the treatment of 5 ml samples enhanced the detection sensitivity to less than 1 ng/ml. The n-hexane extraction of acetylated chlorophenols from 1 ml urine samples is the simplest and fastest procedure because the acetylation and extraction of chlorophenols are performed simultaneously in one step. The C18 adsorption seems to be more suitable than n-hexane extraction for accumulation of chlorophenols from a urine volume of 5 ml and higher because the elution is performed always with the same small volume of acetone. Both C18 adsorption and n-hexane extraction procedures were applied for analysis of chlorophenols in general population and in persons with possible occupational exposure to organochlorine compounds.  相似文献   

14.
A novel hyphenated technique, namely the combination of stir bar sorptive extraction (SBSE) with isotope dilution direct analysis in real time (DART) Orbitrap™ mass spectrometry (OT-MS) is presented for the extraction of phosphoric acid alkyl esters (tri- (TnBP), di- (HDBP), and mono-butyl phosphate (H2MBP)) from aqueous samples. First, SBSE of phosphate esters was performed using a Twister™ coated with 24 μL of polydimethylsiloxane (PDMS) as the extracting phase. SBSE was optimized for extraction pH, phase ratio (PDMS volume/aqueous phase volume), stirring speed, extraction time and temperature. Then, coupling of SBSE to DART/Orbitrap-MS was achieved by placing the Twister™ in the middle of an open-ended glass tube between the DART and the Orbitrap™. The DART mass spectrometric response of phosphate esters was probed using commercially available and synthesized alkyl phosphate ester standards. The positive ion full scan spectra of alkyl phosphate triesters (TnBP) was characterized by the product of self-protonation [M + H]+ and, during collision-induced dissociation (CID), the major fragmentation ions corresponded to consecutive loss of alkyl chains. Negative ionization gave abundant [M − H] ions for both HDnBP and H2MnBP. Twisters™ coated with PDMS successfully extracted phosphate acid esters (tri-, di- and mono-esters) granted that the analytes are present in the aqueous solution in the neutral form. SBSE/DART/Orbitrap-MS results show a good linearity between the concentrations and relative peak areas for the analytes in the concentration range studied (0.1–750 ng mL−1). Reproducibility of this SBSE/DART/Orbitrap-MS method was evaluated in terms of %RSD by extracting a sample of water fortified with the analytes. The %RSDs for TnBP, HDnBP and H2MnBP were 4, 3 and 3% (n = 5) using the respective perdeuterated internal standards. Matrix effects were investigated by matrix matched calibration standards using underground water samples (UWS) and river water samples (RWS). Matrix effects were effectively compensated by the addition of the perdeuterated internal standards. The application of this new SBSE/DART/Orbitrap-MS method should be very valuable for on-site sampling/monitoring, limiting the transport of large volumes of water samples from the sampling site to the laboratory.  相似文献   

15.
In this work, polyurethane foams (PU) were developed, characterized and applied as new generation polymeric phases for stir bar sorptive extraction (SBSE) using seven triazinic herbicides (simazine, atrazine, prometon, ametryn, propazine, prometryn and terbutryn) as model compounds in water matrices. Assays performed for PU synthesis and characterization demonstrated that seven formulations presented remarkable stability and excellent mechanical and chemical resistance, for which the P6 formulation showed the best results. By performing systematic assays on 25 mL of water samples spiked at the 10 μg/L level, it was established that the best experimental conditions using stir bars coated with P6 were an equilibrium time of 6 h (1250 rpm), 5% of methanol as organic modifier, followed by liquid desorption with methanol as back extraction solvent under ultrasonic treatment (20 min) and high performance liquid chromatography with diode array detection (SBSE(PU)-LD-HPLC-DAD). This methodology provided good recoveries (20.4-62.0%) and remarkable reproducibility (R.S.D. <7.0%). Furthermore, excellent linear dynamic ranges between 0.9 and 16.7 μg/L (r2 > 0.9949) and detection limits (0.1-0.5 μg/L) at trace level were also achieved. The application of the proposed analytical approach to analyze triazinic herbicides in ground and superficial water matrices, showed remarkable performance and by using the standard addition methodology the matrix effects are negligible. By comparing the best PU formulation (P6, 71 μL) with commercial stir bars coated with PDMS (126 μL), recoveries normalized to the polymeric volume up to five times higher (atrazine) were attained. The ability of PU foams to extract the more polar compounds rather than PDMS makes this polymer a very valuable contribution for SBSE.  相似文献   

16.
Cd(II) imprinted 3-mercaptopropyltrimethoxysilane (MPTS)-silica coated stir bar was prepared by sol–gel technique combining with a double-imprinting concept for the first time and was employed for stir bar sorptive extraction (SBSE) of trace Cd(II) from water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. A tetramethoxysilane (TMOS) coating was first in situ created on the glass bar surface. Afterward, a sol solution containing MPTS as the functional precursor, ethanol as the solvent and both Cd(II) and surfactant micelles (cetyltrimethylammonium bromide, CTAB) as the template was again coated on the TMOS bar. The structures of the stir bar coating were characterized by FT-IR spectroscopy. Round-bottom vial was used for the extraction of Cd(II) by SBSE to avoid abrasion of stir bar coatings. The factors affecting the extraction of Cd(II) by SBSE such as pH, stirring rate and time, sample/elution volume and interfering ions have been investigated in detail, and the optimized experimental parameters were obtained. Under the optimized conditions, the adsorption capacities of non-imprinted and imprinted coating stir bars were found to be 0.5 μg and 0.8 μg bar−1. The detection limit (3σ) based on three times standard deviations of the method blanks by 7 replicates was 4.40 ng L−1 and the relative standard deviation (RSD) was 3.38% (c = 1 μg L−1, n = 7). The proposed method was successfully applied for the analysis of trace Cd(II) in rain water, East Lake and Yangtze River water. To validate the proposed method, certified reference material of GSBZ 50009-88 environmental water was analyzed and the determined value is in a good agreement with the certified value. The developed method is rapid, selective, sensitive and applicable for the analysis of trace Cd(II) in environmental water samples.  相似文献   

17.
In this paper, 1-hexadecyl-3-methylimidazolium bromide (C16mimBr)-coated Fe3O4 magnetic nanoparticles (NPs) as an adsorbent of mixed hemimicelles solid-phase extraction was investigated for the preconcentration of two chlorophenols (CPs) in environmental water samples prior to HPLC with UV detection at 285 nm. The high surface area and excellent adsorption capacity of the Fe3O4 NPs after modification with C16mimBr were utilized adequately in the SPE process. By the rapid isolation of Fe3O4 NPs through placing a strong magnet on the bottom of beaker, the time-consuming preconcentration process of loading large volume sample in conventional SPE method with a column can be avoided. A comprehensive study of the adsorption conditions such as the zeta-potential of Fe3O4 NPs, added amounts of C16mimBr, pH value, standing time and maximal extraction volume were also presented. Under optimized conditions, two analytes of 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) were quantitatively determined. The method was then used to determine the two CPs in real environmental water samples. The accuracy of method was evaluated by recovery measurements on spiked samples. Good recovery results (74–90%) were achieved. It is important to note that satisfactory preconcentration factors and extraction recoveries for the two CPs were obtained with only a small amount of Fe3O4 NPs (40 mg) and C16mimBr (24 mg).  相似文献   

18.
A new polymeric coating consisting of a dual-phase, polydimethylsiloxane (PDMS) and polypyrrole (PPY) was developed for the stir bar sorptive extraction (SBSE) of antidepressants (mirtazapine, citalopram, paroxetine, duloxetine, fluoxetine and sertraline) from plasma samples, followed by liquid chromatography analysis (SBSE/LC-UV). The extractions were based on both adsorption (PPY) and sorption (PDMS) mechanisms. SBSE variables, such as extraction time, temperature, pH of the matrix, and desorption time were optimized, in order to achieve suitable analytical sensitivity in a short time period. The PDMS/PPY coated stir bar showed high extraction efficiency (sensitivity and selectivity) toward the target analytes. The quantification limits (LOQ) of the SBSE/LC-UV method ranged from 20 ng mL−1 to 50 ng mL−1, and the linear range was from LOQ to 500 ng mL−1, with a determination coefficient higher than 0.99. The inter-day precision of the SBSE/LC-UV method presented a variation coefficient lower than 15%. The efficiency of the SBSE/LC-UV method was proved by analysis of plasma samples from elderly depressed patients.  相似文献   

19.
This article presents a method employing stir bar sorptive extraction (SBSE) with in situ derivatization, in combination with either thermal or liquid desorption on-line coupled to gas chromatography-mass spectrometry for the analysis of fluoxetine in plasma samples. Ethyl chloroformate was employed as derivatizing agent producing symmetrical peaks. Parameters such as solvent polarity, time for analyte desorption, and extraction time, were evaluated. During the validation process, the developed method presented specificity, linearity (R2 > 0.99), precision (R.S.D. < 15%), and limits of quantification (LOQ) of 30 and 1.37 pg mL−1, when liquid and thermal desorption were employed, respectively. This simple and highly sensitive method showed to be adequate for the measurement of fluoxetine in typical and trace concentration levels.  相似文献   

20.
Kole PL  Millership J  McElnay JC 《Talanta》2011,85(4):1948-1958
A novel stir bar sorptive extraction (SBSE) method coupled with high performance liquid chromatography (HPLC) and UV detection for the extraction of diclofenac (DIC) from paediatric urine samples has been developed and validated. Selectivity and sensitivity being the prime objectives of the bioanalytical method for clinical samples, an optimised SBSE protocol was developed that selectively extracted DIC from various concurrently administered drugs. The validated assay was found to be linear (r = 0.9999) over a concentration range of 100-2000 ng mL−1. SBSE showed consistent recoveries (∼70%) of DIC across the validated linearity range. Overall, the method exhibited excellent accuracy and precision across all QC concentrations, tested over three days. Calculated LOD and LOQ were found to be 12.03 ng mL−1 and 36.37 ng mL−1, respectively, however, for the experimental purposes, 100 ng mL−1 was considered as the validated LOQ (accuracy and precision at this LQC was <20%). Further, studies on various attributes of the stir bar/SBSE, showed no significant inter- and intra-stir bar variability for DIC extraction. There was no carryover effect with re-use of conditioned stir bars and for the first time, a systematic investigation on the effect of ageing of stir bars on their extraction efficiency was carried out. Results showed that, for the present study, stir bars which were used 150 times were still functional based on in-house acceptance criteria and extraction efficiency. The validated method was successfully applied to the analysis of DIC in paediatric clinical trial samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号