首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
With regard to Secondary Ion Mass Spectroscopy (SIMS) measurement of atmospheric gas elements, a problem occurs that the detected signal includes background components caused by residual gas along with contained components. Relating to this issue, an available method to quantify the contained components by separating the background ones had been established for Dynamic SIMS. Time‐of‐Flight SIMS with sputtering ion gun has also applied for depth profiling as well as Dynamic SIMS. However, few studies have attempted to investigate the secondary ion behavior of the atmospheric gas elements for depth profiling by Time‐of‐flight SIMS, especially for low concentration levels. In this study, experimental examinations of the secondary ions of the atmospheric gas elements, such as oxygen, hydrogen, and carbon in the silicon substrate, has been conducted in various analytical conditions of TOF‐SIMS depth profiling mode. Under the analytical conditions of our study, it has been proved that the background intensity of these elements was correlated to the sputtering rate. For the analysis of Floating Zone Silicon substrate, the oxygen intensity of the background component was proportional to the inverse number of the sputtering rate. Based on these facts, the total detected intensity of the atmospheric gas elements was able to be separated into the contained components and background ones by changing the sputtering rate during TOF‐SIMS measurement. An experimental result has shown that the contained oxygen concentration in the Czochralsk Silicon substrate estimated by the “TOF‐SIMS Raster Change Method” has successfully agreed with the result by the Dynamic SIMS.  相似文献   

2.
An Ar Gas Cluster Ion Beam (GCIB) has been shown to remove previous Ar+ ion beam‐induced surface damage to a bulk polyimide (PI) film. After removal of the damaged layer with a GCIB sputter source, XPS measurements show minor changes to the carbon, nitrogen and oxygen atomic concentrations relative to the original elemental bulk concentrations. The GCIB sputter depth profiles showed that there is a linear relationship between the Ar+ ion beam voltage within the range from 0.5 to 4.0 keV and the dose of argon cluster ions required to remove the damaged layer. The rate of recovery of the original PI atomic composition as a function of GCIB sputtering is similar for carbon, nitrogen and oxygen, indicating that there was no preferential sputtering for these elements. The XPS chemical state analysis of the N 1s spectra after GCIB sputtering revealed a 17% damage ratio of altered nitrogen chemical state species. Further optimization of the GCIB sputtering conditions should lead to lower nitrogen damage ratios with the elemental concentrations closer to those of bulk PI. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
孔令然  张树永 《大学化学》2016,31(10):84-88
对于碳氧化反应,在不同温度范围内,温度对反应速率常数的影响呈现不同规律的现象进行了讨论。指出第一阶段主要由氧气在碳表面化学吸附平衡受温度的影响决定。第二阶段则由碳在二氧化碳中发生气化反应,特别是其中的酮基脱附步骤决定。对已有的反应机理进行了比较,提出了新的简化机理,并采用速率控制步骤近似和平衡近似对机理进行了近似处理,得出的第二阶段动力学方程可以较好地解释相关实验规律。  相似文献   

4.
The adsorption and decomposition pathways of 1-propanethiol on a Ga-rich GaAs(100) surface have been investigated using the techniques of temperature programmed desorption, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). 1-Propanethiol adsorbs dissociatively on a clean GaAs(100) surface to form propanethiolate and hydrogen. Further reactions of these species to form new products compete with the recombinative desorption of molecular propanethiol. The C-S bond scission in the propanethiolate results in the formation of propyl species and elemental sulfur. The generation of propene via beta-hydride elimination then follows. In addition, propane and hydrogen form via reductive elimination processes. A recombinative high-temperature propanethiol desorption state is also observed. XPS and TOF-SIMS analyses confirm the presence of sulfur on the GaAs(100) surface following thermal decomposition. This paper discusses the mechanisms by which these products form on the GaAs(100) surface.  相似文献   

5.
To examine precise depth profiles at the interface of SiO2/SiC, a high resolution that can detect slight discrepancies in the distribution is needed. In this study, an experimental method to achieve a high resolution of less than 1 nm was developed by using dual-beam time-of-flight secondary ion mass spectrometry (TOF-SIMS). The analysis was preceded by the following three steps: (1) determination of the optimal analytical conditions of the analysis beam (Bi+) and sputtering beam (Cs+), (2) verification of the etching methods to thin the SiO2 layer, and (3) confirmation of the benefits of the low-energy sputtering beam directed toward SiO2/SiC samples. By using the secondary ion intensity peak-to-valley ratio of BN and BO of a sample with delta-doped boron multilayers, the appropriate Bi+/Cs+ condition for a high depth resolution was determined for each energy level of the sputtering beam. Upon verification of the etching methods to thin the SiO2 layer, slight discrepancies were found between samples that were obtained with different etching methods. The difference in the roughness values of the etched surfaces was proactively utilized for the performance confirmation of the low-energy sputtering beam by means of precise observation of the profiles at the SiO2/SiC interface. The use of a Cs beam with a low energy between 0.25 and 0.5 keV enabled the detection of slight discrepancies in the roughness of less than 1 nm between samples. The aforementioned method has the potential to accurately detect discrepancies in the intrinsic distribution at the SiO2/SiC interface among samples.  相似文献   

6.
Cyclic voltammetry, electrochemical impedance spectroscopy, and rotating disk electrode voltammetry have been used to study the effect of chloride ions on the dissolved oxygen reduction reaction (ORR) on Q235 carbon steel electrode in a 0.02 M calcium hydroxide (Ca(OH)2) solutions imitating the liquid phase in concrete pores. The results indicate that the cathodic process on Q235 carbon steel electrode in oxygen-saturated 0.02 M Ca(OH)2 with different concentrations of chloride ions contain three reactions except hydrogen evolution: dissolved oxygen reduction, the reduction of Fe(III) to Fe(II), and then the reduction of Fe(II) to Fe. The peak potential of ORR shifts to the positive direction as the chloride ion concentration increases. The oxygen molecule adsorption can be inhibited by the chloride ion adsorption, and the rate of ORR decreases as the concentration of chloride ions increases. The mechanism of ORR is changed from 2e and 4e reactions, occurring simultaneously, to quietly 4e reaction with the increasing chloride ion concentration.  相似文献   

7.
The hydrogen (H)/sodium (Na) interface is of great interest in glass corrosion research. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is one of the few techniques that can provide nanoscale H and Na imaging simultaneously. However, the optimized condition for ToF-SIMS imaging of H in glass is still unclear. In H depth profiling using ToF-SIMS, H background control is a key, in which an analysis ion beam and a sputtering ion beam work together in an interlaced mode to minimize it. Therefore, it is of great interest to determine if an auxiliary sputtering ion beam is also necessary to control H background in ToF-SIMS imaging of H. In this study, H imaging with and without auxiliary sputtering beams (Cs+, O2+, and Arn+) was compared on a corroded international simple glass (ISG). It was surprising that the H/Na interface could be directly imaged using positive ion imaging without any auxiliary sputtering ion beam under a vacuum of 2 to 3 × 10−8 mbar. The H+ background was about 5% atomic percent on the pristine ISG glass, which was significantly lower than the H concentration in the alteration layer (~15%). Moreover, positive ion imaging could show distributions of other interesting species simultaneously, providing more comprehensive information of the glass corrosion. If an auxiliary O2+ sputtering ion beam was used, the H+ background could be reduced but still higher than that in the depth profiling. Besides, this condition could cause significant loss of signal intensities due to strong surface charging.  相似文献   

8.
The effect of the conditions of postsynthetic modification of CMK-3 carbon mesoporous molecular sieves on their structural and adsorption properties was studied. The specific surface, volume, pore size, and hydrogen adsorption are markedly enhanced upon activation of CMK-3 by thermal, steam, and chemical treatment using H2, CO2, H2O2, and HNO3. Analysis of the occupancy density of the mesopore surface indicated increased hydrogen adsorption capacity of the hydrogen-activated carbon surface of CMK-3. Hydrogen adsorption is increased from 1.20 to 2.23 mass % at 1 atm and 77 K by steam treatment. This effect may be employed to create efficient carbon MMS adsorbents, including composite adsorbents, for the accumulation and storage of hydrogen at high pressure (adsorption >6 mass %).  相似文献   

9.
The initial oxidation of clean, polycrystalline α‐Th from background CO/CO2 and saturation of the Th surface by O2 has been examined by angle‐resolved Auger electron spectroscopy (ARAES) and time of flight secondary ion mass spectrometry (ToF‐SIMS). Following dissociative adsorption of very low doses of background CO/CO2 (<1 L), the carbon surface population was dominant and spontaneously formed thorium carbide. The accompanying oxygen population increased at a rate roughly one‐third that of the carbon, suggesting simultaneous oxygen incorporation into the bulk. To further corroborate the surface kinetics of adsorbed oxygen, O2 was admitted, following heating and sputter cleaning of the Th; some oxygen atoms continued to diffuse into the bulk until formation of stoichiometric ThO2 at ~37 L. ARAES measurements showed an oxygen concentration gradient in the near‐surface region confirming rapid oxygen incorporation at low doses; however, once the surface is saturated, virtually no variation in the oxygen intensity is observed. AES and ToF‐SIMS depth profiling revealed complete oxide formation to a depth of 2 nm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Presented are initial, S(0) and coverage, Theta, dependent S(Theta), adsorption probability measurements of CO(2) as a function of impact energy, E(i) = 0.12-1.3 eV, adsorption temperature, T(s) = 85-300 K, hydrogen and oxygen pre-exposure, as well as density of defects, Gamma, as varied by annealing (T = 600-900 K) and Ar(+) ion sputtering (dose chi(Ar) at 600 eV at 85 K) of a rutile (1 x 1) TiO(2)(110) surface. The defect densities were qualitatively characterized by thermal desorption spectroscopy (TDS) of CO(2). The CO(2) TDS curves consisted of two structures that can be assigned to adsorption on pristine and oxygen vacancy sites, in agreement with earlier studies. S(0) decreased linearly with E(i) and was independent of T(s). The adsorption dynamics were dominated by the effect of precursor states leading to Kisliuk-like shapes over the E(i) and T(s) range studied. Oxygen vacancy sites reduced S(0) of CO(2). Preadsorbed oxygen blocked preferentially defect sites, which led to an increase in S(0). Hydrogen preadsorption results in physical site blocking with decreased S(0) as H-preexposure increased, while the shape of S(Theta) curves was conserved. In contrast to oxygen, hydrogen does not adsorb preferentially on defect sites. The adsorption probability data were parameterized by analytic functions (Kisliuk model) and by Monte Carlo simulations (MCSs).  相似文献   

11.
Summary Plasma-based Secondary Neutral Mass Spectrometry (SNMS) as a depth-resolving technique was examined for the first time as a method for the quantitative analysis of heterogeneously distributed organic compounds in environmental material. Using argon ion bombardment (340 eV, 2 mA/cm2) SNMS was applied to a variety of organic compounds. Aliphatic and aromatic hydrocarbons as well as organic compounds with heteroelements yielded mass spectra with predominant atomic signals of carbon and all other elements composing the organic compound. Except for molecularly bound chlorine and nitrogen these signals were found to be governed primarily by atomic ionization probabilities, a prerequisite for elemental quantitation with low matrix dependence. For oxygen as one of these elements matrix dependent variations of the relative detection factor of ±40% were obtained in agreement with average deviations reported for alloy samples. The organic character of the samples is manifested in the appearance of CmHn clusters with relative yields declining with increasing number of atoms. The CH signal turned out to be proportional to the hydrogen content regardless of the molecular structure of the compound. This is of analytical importance because low mass separation usually hampers reliable detection of atomic hydrogen with quadrupole mass filters. Other heteroelemental clusters were not detected in significant amounts.  相似文献   

12.
PET (poly(ethylene-terephthalate)) samples provided by different suppliers were investigated with the surface-sensitive methods as electron spectroscopy for chemical analysis (ESCA) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Analysis by means of ESCA provides chemical information from a near-surface region of roughly 6 nm. Specific ESCA data on chemical shifts and on the ratio between oxygen and carbon are compared with corresponding values expected for the molecular structure of bulk PET. In addition, direct chemical information on the molecular structure at the PET surface (essentially from the first two monolayers) has been obtained by TOF-SIMS. Especially, positive and negative TOF-SIMS mass spectra were analyzed in detail and assigned with respect to characteristic polymer fragment ions. Several polymer additives as well as some contaminations present at the PET surfaces could be identified with TOF-SIMS. Dependent on the PET supplier, antioxidants and lubricants such as Irgafos 168, octylstearate, octylpalmitate, octylarachidate and PDMS (polydimethylsiloxane) found at the sample surfaces give typical positive and negative ion fragments.  相似文献   

13.
Mesostructured carbon CMK-3 (Carbon Mesostructured by KAIST) synthesized by the template method is studied as the electrocatalyst for electrosynthesis of Н2О2 from О2 in a gas-diffusion electrode (GDE) in alkaline and acidic solutions. The texture characteristics of the original material and its mixture with hydrophobizer (polytetrafluoroethylene) are studied by the method of low-temperature nitrogen adsorption. The rate constants for hydrogen peroxide decomposition on these materials in alkaline and acidic solutions are calculated. Kinetic parameters of oxygen reduction in alkaline and acidic solutions are determined as well as the capacitance of gas-diffusion electrodes based on mesocarbon. The selectivity of the electrocatalyst is estimated by finding the current fracture γ consumed in oxygen reduction to hydrogen peroxide. Data on the kinetics of hydrogen peroxide accumulation during electrosynthesis of Н2О2 from О2 are obtained. The acidic solution of hydrogen peroxide with the concentration more than 3 M is obtained with the current efficiency higher than 80%.  相似文献   

14.
Cross-flow microfiltration through a 0.8 μm inorganic tubular membrane was enhanced by coupling with a two electrode electrolysis cell producing hydrogen peroxide at high rate, without adding any chemical, by use of carbon felt cathode and dimensional stabilised anode (titanium coated with RuO2). Anodic oxygen and transfer from atmosphere supplied the required oxygen. The current should be maintained under a maximum value to avoid peroxide reduction. This electrochemical process, called electroperoxidation, upgraded the water quality by removing contaminants that limit mass transport through the membrane, i.e. turbidity, dissolved organic carbon (DOC) and microorganisms. Transient filtration was adjusted to an internal clogging model whose coefficient decreased at the same rate as DOC. The microfiltration steady state flux was multiplied by a factor proportional to the peroxide concentration introduced in the filtration loop. The induced resistance decreased simultaneously with chemical oxygen demand and 254 nm absorbance. Steady state fluxes 2.5 times higher than without treatment were experimentally obtained.  相似文献   

15.
The surface composition of amorphous Finemet, Fe73Si15.8B7.2Cu1Nb3, was studied by X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The as‐received sample in the original state and after Ar+ sputter‐cleaning was analyzed at room temperature as well as after cooling to ? 155 °C. In the cooled state, the surface oxide layer composed of oxides of the alloy constituents was found to become enriched with elemental iron and depleted of elemental silicon, boron, oxygen and carbon as compared to the state at room temperature. Interaction of residual water vapor and hydrogen with the complex oxide layer occurring at low temperatures is believed to be responsible for the enhanced formation of surface hydroxides of the alloy constituents. The processes resulting in the observed redistribution of the elements on the surface of Finemet at low temperatures are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
C? SiC films were prepared with an ion‐mixing technology and then introduced with hydrogen by using hydrogen ion irradiation or high‐pressure permeation. It is found that the surfaces of the C? SiC films are always covered by contamination oxygen. XPS was used to analyze the behavior of the contamination oxygen on the surfaces of the C? SiC films before and after hydrogen introduction. The results show that apart from the adsorbed top layer‐containing contaminations like oxygen, carbon, and oxyhydrogen species, the oxygen can react with elements of films and hydrogen. Different carbon–oxygen–hydrogen configurations and C? Si? O or C? Si? OH on the subsurfaces can be formed with different hydrogen introduction methods. Also, the thicknesses of these species‐related oxygen on the subsurface of C? SiC films are estimated in this article. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
In this work, a proof of concept of a novel reactor design for the in-situ electrochemical production of H2O2 from oxygen reduction reaction is presented for the first time. The innovative design incorporates a venturi-based jet aerator to supply atmospheric oxygen without additional energy consumption to a 3D flow-through modified carbon felt (CF) cathode. Preliminary experiments confirmed that electro-generation of hydrogen peroxide is possible in a system as the one proposed. Comparison with a flow-by cell with a gas diffusion cathode under similar conditions revealed that current efficiency towards hydrogen peroxide accumulation is even higher (72 vs 65% at 1 h) than in the case of the conventional system. Jet aerator stands as a promising oxygen supply thanks to its excellent performance and both low investment cost and energy consumption. Considering all the above, the electrochemical jet cell stands as a rather promising design for the efficient hydrogen peroxide electro-generation.  相似文献   

18.
Removal of amitrole from water was studied by adsorption on an activated carbon cloth and by oxidation with hydrogen peroxide using the same activated carbon cloth as catalyst. Study variables included the solution pH, ionic strength, and temperature in the adsorption process and the solution pH and the surface chemistry of the activated carbon cloth in the oxidation process. Results showed that amitrole adsorption on activated carbon cloth was not adequate to remove amitrole from water due to the high solubility and low aromaticity of the herbicide, which reduced its adsorption on the carbon. A higher amitrole removal rate was obtained with the activated carbon/H2O2 system. The best results were obtained on basic activated carbon surfaces at pH 7–10, when hydroxyl radical formation is favored, achieving the removal of 35–45% of the AMT, compared with 20–25% under the best adsorption conditions. Importantly, oxygen fixed on the carbon surface during AMT oxidation must be removed by heat treatment in order to regenerate the surface basicity of the carbon before its reutilization in another oxidation cycle.  相似文献   

19.
We have developed multiple short‐period delta layers as a reference material for SIMS ultra‐shallow depth profiling. Boron nitride delta layers and silicon spacer layers were sputter‐deposited alternately, with a silicon spacer thickness of 1–5 nm. These delta‐doped layers were used to measure the sputtering rate change in the initial stage of oxygen ion bombardment. A significant variation of sputtering rate was observed in the initial 3 nm or less. The sputtering rate in the initial 3 nm was estimated to be about four times larger than the steady‐state value for 1000 eV oxygen ions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The possibilities of measuring depth profiles by secondary ion mass spectrometry are evaluated. The influence of different instrumental and experimental parameters on depth resolution in the profiles are studied: the effects of primary ion beam characteristics, reactive gas adsorption and mechanical aperturing in secondary ion extraction are discussed. Beam effects are studied from the point of view of surface damage. The effects of secondary processes, such as crater edge effects, element mixing, preferential sputtering, background signals, (residual) gas contamination and ion-induced topographical and compositional changes are studied for thin metal and binary materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号