首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
可控阵列微纳结构超疏水铜表面冰霜传质特性   总被引:3,自引:0,他引:3  
金属表面粗糙结构及其润湿性对其露、霜、冰的相变及传质现象有重要影响. 通过电火花微加工和化学氧化法,本文首先实现了铜片表面微米、纳米阵列结构的可控制备. 针对条纹,方柱和四棱锥三种典型微米结构特征,对比研究了单级粗糙结构和二级复合结构超疏水表面的润湿性、结露、结霜、结冰及其融化过程. 微纳复合结构可有效增强超疏水性,减少霜晶形核和生长速度,同时还能大幅度延缓结冰的时间,多次冷热循环处理后,表面仍能保持较好的防霜抗冰性能. 通过经典形核理论,Brown 凝并,一维传热及传质理论,综合分析了冰霜在这种表面的传质特性.  相似文献   

2.
通过在普通胶带表面黏结聚甲基丙烯酸甲酯(PMMA)微米球,再通过水热法在微米球表面制备规则的ZnO纳米棒结构,经氟化处理后得到了具有柔性、大面积、低温超疏水和防冰性能的薄膜.低温环境中,液滴在这种复合的微纳米结构表面可以实现结冰延迟.经历结冰-融化循环后,液滴的界面未发生明显变化,证明了该结构的可靠性.这种抗结冰的薄膜是建立在胶带和PMMA基础之上的,在风电、高压线缆以及冰箱制造工业中具有良好的应用前景.  相似文献   

3.
喷砂-阳极氧化-氟化处理构筑铝合金超疏水表面   总被引:5,自引:0,他引:5  
为研究复合法制备超疏水表面过程中主要工艺参数对表面形貌及超疏水性能的影响,开发了一种喷砂-阳极氧化复合方法,在铝合金表面构筑了微米-纳米二级结构,经氟化处理后获得了超疏水特性.结果表明,喷砂处理在铝合金表面通过冲蚀的凹坑构筑出微米结构,阳极氧化则在铝合金表面通过蜂窝状氧化膜构筑纳米结构.但单纯构筑粗糙结构或单纯改变表面化学组成均不能在铝合金表面获得超疏水特性.单纯的微米结构或纳米结构,即使有低表面能聚合物修饰也不能获得超疏水特性.只有微米-纳米二级结构和低表面能聚合物的协同作用,才能有效构筑铝合金超疏水表面.这种铝合金与水滴接触时,形成的气阱可减小固体表面与水滴的接触面积,降低表面与水滴间的热量交换,从而减缓水分子的凝结,提高铝合金的抗霜冻性.同时,气阱还可有效减缓海水的腐蚀,提高铝合金的耐海水腐蚀性.  相似文献   

4.
静电纺丝制备超疏水TiO2纳米纤维网膜   总被引:4,自引:1,他引:3  
采用静电纺丝技术构筑粗糙表面, 再使用廉价的低表面能物质硅油在煅烧过程中进行同步修饰, 制备出接触角大于150°, 滚动角小于5°的TiO2超疏水表面. 该超疏水表面具有由TiO2纳米纤维和微米尺寸颗粒状硅油高温分解产物织构而成的纳米纤维网膜结构, 这种特殊的微纳米复合粗糙结构和疏水性硅油分解产物的修饰作用导致TiO2纳米纤维网膜的超疏水性. 这种超疏水的TiO2材料为超疏水材料在防水织物、无损失液体运输和微流体等领域的应用提供了新的研究视野.  相似文献   

5.
用含氟丙烯酸酯无规共聚物制备超疏水膜   总被引:4,自引:0,他引:4  
用微乳液聚合法制备了丙烯酸全氟烷基乙酯和甲基丙烯酸甲酯的无规共聚物,并对其进行了表征.采用溶剂挥发成膜法一步制备了具有超疏水性的该聚合物膜,水滴在该聚合物膜上的静态接触角可达151°~160°,滚动角小于3°.通过扫描电子显微镜观察发现该聚合物膜表面分布了许多乳突状突起和微孔洞,并具有微米和纳米尺度相结合的复合杂化结构.该类超疏水表面的形成是由适度粗糙的表面和低表面能相互结合引起的.探讨了该类超疏水膜的形成机理.  相似文献   

6.
超疏水表面由于极端的非润湿特性,在减阻、耐磨、防腐蚀、防结冰和自清洁等领域有着极为广泛的潜在应用。表面粗糙结构和低表面自由能是形成超疏水表面的两个决定因素,也是超疏水表面具有优异的摩擦学性能的主要原因。本文主要对近年来超疏水表面在摩擦学领域的研究进行总结。首先分析了超疏水表面摩擦学的相关理论,然后重点阐述了超疏水表面在摩擦学领域的研究现状,探讨了影响超疏水表面摩擦学性能的因素和作用机理,并对耐磨超疏水表面和超滑表面的摩擦学研究进行了分析。最后提出了超疏水表面摩擦学研究应该关注的重点和方向。本综述旨在引起更多学者对超疏水表面摩擦学研究的关注,对于扩大超疏水表面的应用领域具有重要的理论价值和现实意义。  相似文献   

7.
化学/电化学腐蚀法快速制备超疏水金属铝   总被引:3,自引:0,他引:3  
提出一种金属铝超疏水表面的快速制作方法. 先以化学腐蚀在铝表面形成微米级粗糙结构, 再通过电化学腐蚀构筑纳米结构, 在20 min内完成了超疏水表面所需粗糙结构的制备. 这种化学腐蚀/电化学腐蚀两步法比单独化学或电化学腐蚀方法在时间上缩短了1~2个数量级, 且不受铝材晶形限制, 同时电化学腐蚀所用电流密度也降低了1个数量级, 降低了对电源设备的要求, 可望大规模应用于工业生产和其它金属的超疏水表面制备.  相似文献   

8.
铝合金表面原位自组装超疏水膜层的制备及耐蚀性能   总被引:3,自引:0,他引:3  
采用阳极氧化法在铝合金表面原位构造粗糙结构, 经表面自组装硅氧烷后得到超疏水自清洁表面, 与水滴的接触角最大可达157.5°±2.0°, 接触角滞后小于3°. 通过傅立叶变换红外(FT-IR)光谱分析仪、场发射扫描电子显微镜(FE-SEM)、能谱仪(EDS)、原子力显微镜(AFM)和接触角测试对阳极氧化电流密度、硅氧烷溶液中水的含量和自组装时间等参数进行了分析, 并得到制备超疏水自清洁表面的最优工艺参数. FE-SEM及AFM的测试结果表明, 由自组装硅氧烷膜层的无序性形成的纳米结构和阳极氧化构造的微米级粗糙结构与硅氧烷膜层的低表面能的协同作用构成了稳定的超疏水表面. 电化学测试(动电位极化)的结果表明, 原位自组装超疏水膜层极大地提高了铝合金的耐蚀性.  相似文献   

9.
近年来,除了荷叶表面,更多具有特殊润湿性的动植物表面同样受到关注。通过研究这些表面微观结构,人们成功地仿生制备出各种功能化超疏水表面,从而更好地满足工业中实际应用的需要。该综述简单地介绍了表面润湿的基本模型和最新的几种特殊表面结构,重点介绍近几年仿生超疏水表面应用的最新研究进展,主要包括超疏水表面在超疏油、表面润湿转换、外界刺激下的润湿行为调控、微流体、抗结冰等方面的应用。最后,对超疏水表面研究的未来发展进行了展望。  相似文献   

10.
通过软复型和水热法制备出一种由有机材料和ZnO纳米棒组成的微纳米结构复合表面,这种表面的微米结构是周期为300μm、高度为70μm的锯齿状结构,ZnO纳米线的直径为300~500 nm,长度为2~3μm.这种有机材料和ZnO纳米线复合成的表面经过全氟硅烷修饰后,具有良好的低黏滞特性和低温超疏水性(约为150°)以及较长的结冰延时性(6000~7630 s),实验结果对设计表面低温疏水/疏冰材料具有参考价值.  相似文献   

11.
Dynamics of ice nucleation on water repellent surfaces   总被引:3,自引:0,他引:3  
Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.  相似文献   

12.
Forced or spontaneous wetting of a solid surface in an isothermal case is governed by an outer flow and by wetting properties of the substrate. These properties are determined by the substrate wettability and morphology. Wetting and subsequent or simultaneous icing of surfaces are mutually influenced also by the microscopic processes associated with phase change in the vicinity of the contact angle and in the outer region. In this review, the physical phenomena influencing the wetting and icing of substrates and the latest developments in this field are reviewed.  相似文献   

13.
In some cold areas/regions, ice accumulation is harmful to aircrafts, highways and power lines. To overcome this challenge, many researchers have focused on developing anti-icing surfaces. In this paper, liquid crystal compound Cholest-5-en-3-ol(3β)-4-(2-propenyloxy)benzoate was synthesised, and a liquid crystal surface (LC surface) is prepared by heating the liquid crystal compound to 250°C and then cooling it. We determined ice-phobic properties of LC surface using differential scanning calorimetry (DSC) and polarised optical microscope (POM). A phenomenon that the freezing of water droplet on the LC surface is delayed was found. Compared with the two measurement methods, we obtained similar result that water freezing temperature was delayed nearly by 8°C on average on the LC surface. A process of ice/frost formation is observed using POM. The results displayed that the glass wafer without LC was covered completely by ice/frost, whereas on the LC surface at the same temperature no ice/frost was formed. Characteristics of LC surface were observed by field emission scanning electron microscope (FESEM) and Fourier transform infrared (FT-IR) imaging system. We suggest that the reason behind anti-ice surface is related to surface molecules and this is an important factor which may have an effect on anti-icing property.  相似文献   

14.
This communication examines the effect of the surface morphology of polycrystalline copper on electroreduction of CO(2). We find that a copper nanoparticle covered electrode shows better selectivity towards hydrocarbons compared with the two other studied surfaces, an electropolished copper electrode and an argon sputtered copper electrode. Density functional theory calculations provide insight into the surface morphology effect.  相似文献   

15.
A multiscale simulation-based approach is presented for predicting anti-icing properties of nanocomposite coatings. Development of robust anti-icing coatings is a challenging task. An anti-icing coating that can prevent in-flight icing is of particular interest to the aircraft industry. A multiscale simulations based approach is developed to provide insights into the complex effect of coating material and surface topology on the prevention of in-flight icing. Chemical properties of different coatings and kinetics of icing or inhibition of ice nucleation are calculated from nanoscale atomistic simulations. In addition, in-flight icing environments including impingement and rolling of supercooled microdroplet and nucleation of ice under wind shear have been implemented using fluid dynamics methodologies. A model for icing in nano-to-microscale for surfaces with known chemical composition and surface topology is used for developing predictive capabilities regarding anti-icing performance of potential coatings. In this work, fluorinated polyhedral oligomericsilsesquioxanes molecules have been used to increase nanoscale roughness when embedded in a polycarbonate polymeric matrix. The findings suggest that a successful anti-icing coating will require precise control over nanoscale and microscale roughness. The multiscale methodology presented therefore can potentially help in identifying coupled effects of material, surface topology, and icing environment for promising coatings before performing icing tunnel experiments.  相似文献   

16.
超疏水低粘着铜表面制备及其防覆冰性能   总被引:2,自引:0,他引:2  
用喷砂处理在铜片表面形成微米级丘陵状凹坑,再用表面氧化处理在铜片表面制备菊花花瓣状CuO纳米片.通过喷砂-表面氧化处理在铜片表面成功构建了微米-纳米复合结构,这种表面氟化后与水滴的接触角高达161°,滚动角低至1°,显示出优异的超疏水性和很低的粘着性.低温下,这种表面与水滴间的热量交换较小,水滴不易凝结,有效地提高了抗结霜性.抗结霜性良好的超疏水铜有望在热交换器或低温运行设备等领域获得应用,这种简便的超疏水铜表面的制备方法也给其它工程材料超疏水表面的工业化制备提供了一个思路.  相似文献   

17.
We present theoretical studies based on first-principles density functional theory calculations on the mechanisms of chemical vapor deposition of Cu-hexafluoracetylacetonato-trimethylvinylsilane (Cu(hfac)(tmvs)) on tantalum surfaces. This process has been used in the past to grow copper films via a disproportionation reaction and was found to exhibit adhesion problems. We show that the Ta surfaces are highly reactive and that the organic ligands in a copper precursor would undergo spontaneous decomposition upon contact with the Ta substrates. This may lead to contamination of the metal surfaces caused by the formation of carbide, fluoride, oxide species, or other fragments of the copper precursor on the barrier layer. We propose a practical solution for these adhesion problems caused by the CVD process by passivating the metal surfaces with N(2) to reduce their activity toward the precursor. Our extensive first-principles molecular dynamics simulations under typical deposition conditions predict that, for properly passivated TaN surfaces, only the copper atoms are firmly adsorbed on the surface, with loose Cu-ligand bonds. The ligands are sufficiently stable on these passivated surfaces, remaining slightly above the surface due to the repulsion between the electron-rich N-layer and the electron-rich ligand groups, and subsequently liberated upon the disproportionation reaction.  相似文献   

18.
Short oligopeptides that complex with metal ions with high affinity and high specificity are of interest to the design of chemical sensors. In this study, we compare the complexation properties of two copper-selective tripeptides, Gly-Gly-His and His-Gly-Gly, either in aqueous solutions or immobilized on solid surfaces. Our results show that the copper complex formed by Gly-Gly-His is more stable than the complex formed by His-Gly-Gly in aqueous solutions, because the position of histidine (His) in the Gly-Gly-His permits the formation of a tetragonal copper complex with a high stability. However, when the tripeptides are immobilized on aldehyde-decorated silicon wafer surfaces under a reaction condition that gives rise to near maximum surface densities of tripeptides, both immobilized Gly-Gly-His and His-Gly-Gly experience strong steric hindrance on the over-crowded surfaces. The surface crowding effect causes less complexation with copper ions than that in aqueous solutions. To ensure a proper surface density on the surface for complexation with copper ions, a so-called two-dimensional (2D) metal-ion imprinting technique is employed to avoid the surface crowdedness. By immobilizing Gly-Gly-His in the presence of copper ions, we create a tripeptide-functionalized surface that exhibits high complexation capability for copper ions. We attribute the higher copper complexation capability to the proper intermolecular distances obtained from the ion-imprinting procedure that gives the copper-tripeptide complex a preferential tetragonal geometry. Our results show that the amounts of copper complexed to a copper-imprinted surface functionalized with Gly-Gly-His are 62% higher than those of a nonimprinted surface.  相似文献   

19.
We report an upper-division undergraduate solid-state materials chemistry experiment involving the pit and crevice corrosion of a copper surface caused by an aqueous NaCl solution simulating a seawater environment. Surface corrosion of the copper can be shown quite dramatically using atomic force microscopy (AFM) within only hours of exposure to the saline solution. The copper surfaces can also be treated with an alkanethiol solution to form a self-assembled monolayer (SAM) on the surface. When exposed to the salt-water solution, the SAM layer is shown by AFM to protect the surface from corrosion. We have also shown that several different AFM analysis methods are needed to adequately quantify the surface features including roughness and power spectral density. This experiment enables students to not only see how AFM can be used to observe changes in surface morphology, but also learn to develop an understanding of the analysis techniques used to quantify AFM data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号