首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 468 毫秒
1.
张晓燕  宋海滨  唐良富 《化学学报》2011,69(21):2567-2573
通过三苯基锡基-双(3,5-二甲基吡唑)甲烷与羰基钼的反应合成了钼锡键合的四元金属杂环化合物CH(3,5- Me2Pz)2Mo(CO)3SnPh3 (Pz=1-吡唑基). 当用叔丁基异腈处理该化合物及其钨类似物时, 伴随着有机锡结构单元的丢失, 金属钼(钨)上发生还原消除并分解得到化合物CH2(3,5-Me2Pz)2M(CO)3(CNBu-t) (M为Mo或W). 另外, 该化合物与三苯基膦或亚磷酸甲酯及异丙酯反应时, 只发生羰基取代反应得到化合物CH(3,5-Me2Pz)2Mo(CO)2(PR3)SnPh3 (R为苯基、甲氧基及异丙氧基). 而用亚磷酸苯酯与之反应, 除得到羰基取代产物外, 还伴随着P-O/C键的交换, 得到金属钼上还原消除的产物(PhO)2PCH(3,5-Me2Pz)2Mo(CO)3.  相似文献   

2.
通过双吡唑基甲基锂与二苯基乙烯基碘化锡的反应, 合成了桥头碳上带有乙烯基锡修饰的双吡唑甲烷配体。在回流的THF中这些乙烯基锡修饰的双吡唑甲烷配体(R3SnCHPz2, R3Sn为三乙烯基锡或二苯基乙烯基锡;Pz代表取代吡唑)与M(CO)5THF (M = Mo或W)反应产生杂双金属化合物R3SnCHPz2M(CO)3。在这些化合物中,一个乙烯基以h2方式配位到金属钼或钨上,双吡唑甲烷表现为一个三齿k3-(p,N,N)配体。(CH2=CH)3SnCH(3,5-Me2Pz)2W(CO)3和Ph2(CH2=CH)SnCH(3,5-Me2Pz)2W(CO)3与I2的反应也被研究。前者给出化合物CH2(3,5-Me2Pz)2W(CO)4,而后者随着有机锡的丢失产生四元金属杂环化合物CH(3,5-Me2Pz)2W(CO)3I。用PhSNa处理该四元金属杂环化合物导致碘负离子被取代,得到化合物CH(3,5-Me2Pz)2W(CO)3SPh。  相似文献   

3.
不对称取代双(吡唑)甲烷VIB羰基金属化合物的合成及表征   总被引:1,自引:0,他引:1  
3-苯基吡唑与二溴甲烷在相转移催化下反应,得到(3-苯基吡唑-5'-苯基吡唑)甲烷(1)和双(3-苯基吡唑)甲烷(2)的混合物.当该混合配体与M(CO)6(M=Cr,Mo,W)在光照下反应时,分离得到了不对称取代的(3-苯基吡唑-5'-苯基吡唑)甲烷四羰基铬(3),钼⑷和钨(5).用X-射线衍射测定了化合物5的晶体结构.结果表明,该晶体属于单斜晶系,P2(1)/n空间群,a=1.7976(7) rnn,b=1.3210(5) nm, c=1.8681(7) nm;β=98.293(8)°, V=4.390(3) nm3, Z=8,最终结构偏离因子[I>2σ(I)]=0.0516, Rw=0.0898, GOF=0.879.两个苯基分别处于两个吡唑的3位及5'位.  相似文献   

4.
三(2-甲基-2-苯基丙基)锡氧化物(Torque,苯丁锡,[(C6H5CMe2CH2)3Sn]2O)是-个已商品化的有机锡杀螨剂[1]。为了研究三烃基锡衍生物中阴离子配体对生物活性的影响,本文用苯丁锡与酚或羧酸反应,合成了四个系列的含氧三(2-甲基-2-苯基丙基)锡衍生物。  相似文献   

5.
具有五元环结构的偶氮化合物4,4-二甲基-4,5-二氢-3H-吡咯(N2C5H10),与Fe3(CO)12在甲苯中加热回流反应,生成双铁六羰基配合物Fe2(N2C5H10)(CO)6(1).反应中N=N双键被还原,配体以(N2C5H102-的形式与FeIFeI配位,形成具有蝶形结构的34e-化合物.研究了在脱羰基试剂Me3NO存在条件下,1和单齿膦配体PR3反应生成Fe2(N2C5H10)-(CO)5(PR3)(PR3=PPh3,2a;PCy3,2b)单取代配合物.光照条件下,化合物1中的CO配体还可以被双齿膦配体dppe[dppe=1,2-C2H4(PPh22]和dppbz[dppbz=1,2-C6H4(PPh22]取代,生成产物的类型和膦配体的夹角相关.与夹角较大的dppe反应,生成桥连产物Fe2(N2C5H10)(CO)4μ-dppe)(3a);而与刚性较大的dppbz反应时,Fe2(NR)2的蝶形结构打开呈四元环;其中一个Fe上的CO被取代,dppbz与该Fe中心螯合,生成具有桥连CO的化合物Fe2(N2C5H10)(μ-CO)(CO)4κ2-dppbz)(3b).合成具有FeI-CO-FeI结构的羰基化合物,一直是模拟[FeFe]氢化酶活性中心还原态结构Fe2(SR)2μ-CO)-(CO)5-xLx的重要挑战.该类Fe2(NR)2(CO)6-x(PR3x化合物的合成,能为探索模拟[FeFe]氢化酶活性中心结构提供新的途径和思路.以上化合物均通过核磁[31P(1H)NMR]、红外光谱(IR)、元素分析及X射线单晶结构衍射等表征.  相似文献   

6.
研究了(氮甲基咪唑-2-基)双(3,5-二甲基吡唑)甲烷(L1),2-吡啶基双(3,5-二甲基吡唑)甲烷(L2)及4-吡啶基双(3,5-二甲基吡唑)甲烷(L3)与羰基钨的反应,合成了一系列以单齿,双齿及三齿氮配位的羰基金属衍生物LW(CO)5(L=L1或L3),LW(CO)4(L=L1,L2或L3)和LW(CO)3(L=L1或L2)。核磁,红外及X-射线单晶衍射分析表明这3种配体表现出了可变的配位方式。在LW(CO)5中,当配体为L1时,其倾向于通过咪唑氮与金属配位,而为L3则倾向于利用吡啶氮与金属作用;在LW(CO)4中,配体L1表现为通过咪唑氮和吡唑氮原子配位的[N,N′]双齿配体,而L2和L3表现为通过吡唑氮原子配位的[N,N]双齿配体;在LW(CO)3中,L1和L2起着[N,N,N′]三齿螯合配体的作用。  相似文献   

7.
研究了(氮甲基咪唑-2-基)双(3,5-二甲基吡唑)甲烷(L1),2-吡啶基双(3,5-二甲基吡唑)甲烷(L2)及4-吡啶基双(3,5-二甲基吡唑)甲烷(L3)与羰基钨的反应,合成了一系列以单齿,双齿及三齿氮配位的羰基金属衍生物LW(CO)5(L=L1或L3),LW(CO)4(L=L1,L2或L3)和LW(CO)3(L=L1或L2)。核磁,红外及X-射线单晶衍射分析表明这3种配体表现出了可变的配位方式。在LW(CO)5中,当配体为L1时,其倾向于通过咪唑氮与金属配位,而为L3则倾向于利用吡啶氮与金属作用;在LW(CO)4中,配体L1表现为通过咪唑氮和吡唑氮原子配位的[N,N′]双齿配体,而L2和L3表现为通过吡唑氮原子配位的[N,N]双齿配体;在LW(CO)3中,L1和L2起着[N,N,N′]三齿螯合配体的作用。  相似文献   

8.
通过 3 ,5 -二甲基 -4-苄基吡唑与二溴甲烷在相转移催化下反应 ,合成了一个新的多吡唑烷配体双 (3 ,5 -二甲基 -4-苄基吡唑 )甲烷 .该配体与 M(CO) 6 (M=Cr,Mo,W)在光照下反应可以得到双 (3 ,5 -二甲基 -4-苄基吡唑 )甲烷四羰基铬 (2 )、钼 (3 )和钨 (4 ) .用 Sn Cl4 处理化合物 3和 4可以高产率地制得含 Mo(W)— Sn键的杂双金属配合物 .用 X射线衍射法测定了化合物 4与 Sn Cl4 反应产物 6的晶体结构 .结果表明 ,该晶体属三斜晶系 ,P1空间群 ,晶胞参数 a=1 .0 92 9(9) nm,b=1 .2 82 (1 ) nm,c=1 .2 82 (1 ) nm,α=1 0 2 .3 5 (1 )°,β=1 0 8.62 (1 )°,γ=97.0 0 (1 )°,V=1 .799(3 ) nm3,Z=2 ,最终结构偏离因子 R=0 .0 5 8,w R=0 .1 0 1 5 ,GOF=0 .90 5 .六元金属杂环 W— N— N— C— N— N为船式构象 ,分子中没有氯桥存在 .  相似文献   

9.
测定了(p-CH3OC6H4)2TeO存在下M2(CO)10(M=Mn,Re)的CO取代反应速率及活化参数。其表观速率常数分别与M2(CO)10和(p-CH3OC6H4)2TeO的浓度的一次方成正比。本文所建议的缔合机理与前人用(CH3)3NO作氧原子转移试剂的相应反应所提出的机理相似。讨论了在(CH3)3NO和(p-CH3OC6H4)2TeO存在下影响M2(CO)10的CO取代反应速率的因素。  相似文献   

10.
合成了1-(2-吡啶甲基)-1,2,4-三唑(L)并研究了其与有机锡和羰基钼(钨)的配位反应,合成了通过三唑4位氮原子以单齿形式配位的有机锡衍生物L2SnR2Cl2(R=Me,n-Bu或Ph)和羰基金属配合物LM(CO)5(M=Mo或W),以及N,N螯合双齿配位的四羰基金属配合物LM(CO)4。当用氯化苄处理L时,制得了相应的三唑盐,该盐用氧化银处理后与M(CO)5THF或M(CO)4(NHC5H10)2(NHC5H10为哌啶)反应,得到了基于三唑的氮杂环卡宾衍生物L′M(CO)5和L′M(CO)4(L′=1-(2-吡啶甲基)-4-苄基-1,2,4-三唑-5-碳烯)。X-射线单晶衍射分析表明,在L′M(CO)5中氮杂环卡宾配体L′表现为通过卡宾碳配位的单齿配体;而在L′M(CO)4中,L′表现为通过卡宾碳和吡啶氮原子配位的螯合[C,N]双齿配体。  相似文献   

11.
The modification of bis(pyrazol-1-yl)methane by sulfur or selenium on the methine carbon has been successfully carried out by the reaction of the bis(pyrazol-1-yl)methide anion, prepared in situ by the reaction of bis(pyrazol-1-yl)methane with n-BuLi, with elemental sulfur or selenium. These bis(pyrazol-1-yl)methylthiolate or selenolate anions reacted with Ph2SnCl2 to form new organotin derivatives CH(3,5-Me2Pz)2ESnPh2Cl (Pz = pyrazol-1-yl, E = S (1) or Se (2)), which have been characterized by NMR, IR and elemental analysis. The molecular structure of 2 determined by X-ray structure analysis indicates that bis(3,5-dimethylpyrazol-1-yl)methylselenolate is a bidentate monoanionic κ2-[N,Se] chelating ligand. The treatment of CH(3,5-Me2Pz)2ESnPh2Cl with W(CO)5THF resulted in the decomposition of ligands to yield pyrazole derivative of (3,5-Me2PzH)W(CO)5, while direct treatment of bis(pyrazol-1-yl)methylthiolate or selenolate anions with M(CO)5THF (M = Mo or W) formed their tricarbonyl metal anions . Succedent reaction of these carbonyl metal anions with Ph2SnCl2 or Ph3SnCl yielded heterobimetalic compounds CH(Pz)2EM(CO)3SnPhnCl3−n (n = 2 or 3), which have also been characterized by 1H NMR, IR and elemental analysis. The structure of CH(3,4,5-Me3Pz)2SW(CO)3SnPh3 (8) has been confirmed by X-ray single crystal diffraction, showing that bis(3,4,5-trimethylpyrazol-1-yl)methylthiolate acts as a tridentate, monoanionic κ3-[N,S,N] chelating ligand.  相似文献   

12.
The modification of bis(pyrazol-1-yl)methanes by organotin halide on the methine carbon atom has been successfully carried out, and their related reactions have also been studied. Bis(3,5-dimethylpyrazol-1-yl)(iododiphenylstannyl)methane [Ph2ISnCH(3,5-Me2Pz)2] can be obtained by the selective cleavage of the Sn-Csp2 bond in bis(3,5-dimethylpyrazol-1-yl)triphenylstannylmethane with I2 in a 1:1 molar ratio, while {di(tert-butyl)chlorostannyl}bis(3,5-dimethylpyrazol-1-yl)methane [(t-Bu)2ClSnCH(3,5-Me2Pz)2] and {di(tert-butyl)chlorostannyl}bis(3,4,5-trimethylpyrazol-1-yl)methane [(t-Bu)2ClSnCH(3,4,5-Me3Pz)2] are easily prepared by the reaction of the bis(3,5-dimethylpyrazol-1-yl)methide or bis(3,4,5-trimethylpyrazol-1-yl)methide anion with di(tert-butyl)tin dichloride. The molecular structure of [(t-Bu)2ClSnCH(3,5-Me2Pz)2] determined by X-ray structure analysis indicates that bis(3,5-dimethylpyrazol-1-yl)methide acts as a bidentate monoanionic κ2-[C,N] chelating ligand. Reaction of these bis(pyrazol-1-yl)methanes functionalized by organotin halide with W(CO)5THF results in the oxidative addition of the relative electrophilic Sn-X (X = Cl or I) bond instead of the Sn-Csp3 bond to the tungsten(0) atom, yielding new metal-metal bonded complexes R2SnCHPz2W(CO)3X (R = Ph or t-Bu, Pz represents substituted pyrazol-1-yl). Furthermore, treatment of the oxidative addition product (t-Bu)2SnCH(3,5-Me2Pz)2W(CO)3Cl with n-BuLi results in known complex CH2(3,5-Me2Pz)2W(CO)4 with the loss of the organotin fragment. In addition, reaction of Ph2ISnCH(3,5-Me2Pz)2 with 2-PySNa (Py = pyridyl) leads to the replacement of iodide by 2-PyS anion to give Ph2(2-PyS)SnCH(3,5-Me2Pz)2, which subsequently reacts with W(CO)5THF to result in the decomposition of this ligand, also yielding the known bis(3,5-dimethylpyrazol-1-yl)methane derivative of CH2(3,5-Me2Pz)2W(CO)4.  相似文献   

13.
Reactions of 2-hydroxyphenyl and 2-methoxyphenylbis(pyrazol-1-yl)methanes as well as 2-hydroxyphenyl and 2-methoxyphenylbis(3,5-dimethylpyrazol-1-yl)methanes with W(CO)5THF have been carried out. Heating 2-hydroxyphenylbis(pyrazol-1-yl)methane (L1) with W(CO)5THF in THF at reflux yielded complex (L1)W(CO)4.L1, while similar reaction of 2-hydroxyphenylbis(3,5-dimethylpyrazol-1-yl)methane (L2) with W(CO)5THF resulted in the cleavage of a Csp3-N bond to generate 1,2-bis(2-hydroxyphenyl)-1,2-bis(3,5-dimethylpyrazol-1-yl)ethane (L) and pyrazole derivative W(CO)5(3,5-Me2PzH) (Pz = pyrazol-1-yl). These two fragments were connected together through strong O…H-N and O-H…N hydrogen bonds to form complex L.[W(CO)5(3,5-Me2PzH)]2. The analogous results were observed in the treatment of 2-methoxyphenylbis(pyrazol-1-yl)methane (L3) with W(CO)5THF, which gave product L′.[W(CO)5(PzH)]2 (L′ = 1,2-bis(2-methoxyphenyl)-1,2-bis(pyrazol-1-yl)ethane) as well as certain amount of complex (L3)W(CO)4. In addition, during the reaction of 2-methoxyphenylbis(3,5-dimethylpyrazol-1-yl)methane (L4) with W(CO)5THF, partial decomposition reactions took place to yield complexes (L4)W(CO)4 and W(CO)5(3,5-Me2PzH), but no hydrogen bond was found between these two moieties.  相似文献   

14.
The reaction of bis(pyrazol-1-yl)methane tetracarbonylmolybdenum(0) or tungsten(0) complexes with RSnCl3 (R=Ph, Cl) at room temperature yielded heterobimetallic complexes CH2(Pz)2M(CO)3(Cl)(SnCl2R) (Pz represents substituted pyrazole; M=Mo or W; R=Ph or Cl) in good yields, which have been characterized by elemental analysis, 1H NMR and IR spectroscopy. The reaction of bis(3,5-dimethyl-4-halopyrazol-1-yl)methane tetracarbonyl tungsten with PhSnCl3 did not take place even in refluxing CH2Cl2. The electronic and steric characteristics of substituents on the pyrazole ring remarkably influence the structures of the products. The structures of CH2(3,5-Me2-4-BrPz)2W(CO)3(Cl)(SnCl3) (8) and CH2(4-BrPz)2Mo(CO)3(μ-Cl)(SnCl2Ph) (17) (Pz: pyrazole) determined by X-ray crystallography show that no chlorine-bridged W---Sn bond is observed in complex 8, while one chlorine-bridged Mo---Sn bond exists in complex 17. The Sn---M bond length is 2.7438(5) Å in complex 8 (W---Sn) and 2.7559(4) Å in complex 17 (Mo---Sn).  相似文献   

15.
The reaction of 3(5)-methylthio-5(3)-phenylpyrazole with dibromomethane under phase-transfer catalytic conditions only affords a new ligand, bis(3-phenyl-5-methylthiopyrazol-1-yl)methane. However, the reaction of 3(5)-methylthio-5(3)-p-methoxyphenylpyrazole or 3(5)-methylthio-5(3)-tert-butylpyrazole with dibromomethane under the same conditions yields three isomers, respectively, indicating that the substituents significantly affect the steric and electronic properties of pyrazole ring during the formation of ligands. Treatment of these potential polydentate ligands with M(CO)6 (M=Cr, Mo or W) under UV irradiation at room temperature affords (NN)M(CO)4 derivatives, in which some complexes contain asymmetric substituted bis(pyrazol-1-yl)methane ligands. The X-ray crystal structure analyses indicate that the sulfur atoms in these complexes do not take part in the coordination to the metal centers, and S-rich bis(pyrazol-1-yl)methanes actually act as bidentate chelating ligands by two nitrogen atoms. It is also interesting that in order to reduce the repulsion of methyl groups with carbonyls, the methyl groups in these complexes are oriented away from the metal centers.  相似文献   

16.
New multidentate heteroscorpionate ligands, N-phenyl-2,2-bis(3,5-dimethylpyrazol-1-yl)thioacetamide PhHNCSCH(3,5-Me2Pz)2 (1), N-phenyl-2,2-bis(3,4,5-trimethylpyrazol-1-yl)thioacetamide PhHNCSCH(3,4,5-Me3Pz)2 (2), and ethyl 2,2-bis(3,5-dimethylpyrazol-1-yl)dithioacetate EtSCSCH(3,5-Me2Pz)2 (8), have been synthesized and their coordination chemistry studied. These heteroscorpionate ligands can act as monodentate, bidentate, or tridentate ligands, depending on the coordinate properties of different metals. Reaction of W(CO)6 with 1 or 2 under UV irradiation yields monosubstituted carbonyl tungsten complexes W(CO)5L (L = 1 or 2), in which N-phenyl-2,2-bis(pyrazol-1-yl)thioacetamide acts as a monodentate ligand by the s-coordination to the tungsten atom. In addition, these monosubstituted tungsten complexes have also been obtained by heating ligand 1 or 2 with W(CO)5THF in THF. While similar reaction of Fe(CO)5 with 1, 2, or 8 under UV irradiation results in tricarbonyl iron complexes PhHNCSCH(3,5-Me2Pz)2Fe(CO)3 (5), PhHNCSCH(3,4,5-Me3Pz)2Fe(CO)3 (6), and EtSCSCH(3,5-Me2Pz)2Fe(CO)3 (9), respectively, in which N-phenyl-2,2-bis(pyrazol-1-yl)thioacetamide or ethyl 2,2-bis(pyrazol-1-yl)dithioacetate acts as a bidentate ligand through one pyrazolyl nitrogen atom and the CS π-bond in an η2-C,S fashion side-on bonded to the iron atom to adopt a neutral bidentate κ2-(π,N) coordination mode. Treatment of the lithium salt of 1 with Co(ClO4)2 · 6H2O gives complex [PhNCSCH(3,5-Me2Pz)2]2Co(ClO4) with the oxidation of cobalt(II) to cobalt(III), in which N-phenyl-2,2-bis(3,5-dimethylpyrazol-1-yl)thioacetamide acts as a tridentate monoanionic κ3-(N,N,S) chelating ligand by two pyrazolyl nitrogen atoms and the sulfur atom of the enolized thiolate anion.  相似文献   

17.
The reaction of triphenylstannyl-bis(3,5-dimethyl-4-ethylpyrazol-1-yl)methane with W(CO)5THF yields the title compound (C37.5H39.5N4O3SnW, Mr = 896.79) which is of triclinic,space group P1 with a = 9.755(3), b = 13.696(4), c = 14.359(5) A, α = 96.202(7), β= 93.313(6), γ=94.845(6)°, V = 1896(1) A3, Z = 2, Dc = 1.571 g/cm3, λ(MoKα) = 0.71073 A, μ= 3.728 mm-1,F(000) = 881, R = 0.0491 and wR = 0.0856 for 4242 observed reflections (I≥2σ(I)). The crystalstructural analysis indicates that bis(3,5-dimethyl-4-ethylpyrazol-1-yl)methide acts as a tridentate monoanionic K3-[N,C,N] chelating ligand, and four-membered metallacycles are found in this heterodinuclear complex.  相似文献   

18.
1 INTRODUCTION As a kind of popular polydentate nitrogen donor ligands, poly(pyrazol-1-yl)alkanes, especially bis(pyrazol-1-yl)methanes, have been widely used for many years to synthesize main group[1, 2] and transition metal complexes[3, 4]. Recent inve…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号