首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research investigations involving pristine carbon nanotubes (CNTs) and their applications in diversified fields have been gathering enormous impetus in recent times. One such emerging domain deals with the hybridization of CNTs within hydrogels to form soft nanocomposites with superior properties. However, till now, reports on the inclusion of pristine CNTs within low‐molecular‐weight hydrogels are very scarce due to their intrinsic feature of remaining in the bundled state and strong repulsive behavior to the aqueous milieu. Herein, the synthesis of a series of amino acid/dipeptide‐based amphiphilic hydrogelators having a quaternary ammonium/imidazolium moiety at the polar head and a C16 hydrocarbon chain as the hydrophobic segment is reported. The synthesized amphiphiles exhibited excellent hydrogelation (minimum gelation concentration (MGC) ≈0.7–5 % w/v) as well as single‐walled carbon nanotube (SWNT) dispersion ability in aqueous medium. Interestingly, the dispersed SWNTs were incorporated into the supramolecular hydrogel formed by amphiphiles with an imidazolium moiety at the polar end through complementary cation–π and π–π interactions. More importantly, the newly synthesized hydrogelators were able to accommodate a significantly high amount of pristine SWNTs (2–3.5 % w/v) at their MGCs without affecting the gelating properties. This is the first time that such a huge amount of SWNTs has been successfully incorporated within hydrogels. The efficient inclusion of SWNTs to develop soft nanocomposites was thoroughly investigated by spectroscopic and microscopic methods. Remarkably, the developed nanocomposites showed manifold enhancement (≈85‐fold) in their mechanical strength compared with native hydrogel without SWNTs. The viscoelastic properties of these nanocomposites were readily tuned by varying the amount of incorporated CNTs.  相似文献   

2.
We report remarkable metal‐free electrocatalytic activities of the imidazolium salt‐functionalized ionic multi‐walled carbon nanotubes (IM‐f‐MWCNTs) in the oxygen reduction reaction (ORR). The electrocatalytic activity can be attributed to the induced polarization of the π‐electrons of CNTs, thus accelerating interfacial electron transfer. The zwitterionic MWCNTs functionalized with poly(vinylimidazolium sulfonate) have a more positive surface charge and exhibit a better electrocatalytic activity than the poly(vinylbutylimidazolium chloride)‐functionalized MWCNTs. The IM‐f‐MWCNTs showed better fuel selectivity than the commercial Pt/C electrocatalyst.  相似文献   

3.
Two types of ionic liquids (ILs), 1‐(3‐hexenyl)‐3‐methyl imidazolium iodide and 1‐(3‐butenyl)‐3‐methyl imidazolium iodide, are synthesized by introducing an unsaturated bond into the side alkyl chain of the imidazolium cation. These new ionic liquids exhibit high thermal stability and low viscosity (104 cP and 80 cP, respectively). The molecular dynamics simulation shows that the double bond introduced in the alkane chain greatly changes the molecular system space arrangement and diminishes the packing efficiency, leading to low viscosity. The low viscosity of the synthesized ionic liquids would enhance the diffusion of redox couples. This enhancement is detected by fabricating dye‐sensitized solar cells (DSSCs) with electrolytes containing the two ILs and I2. The highest efficiency of DSSCs is 6.85 % for 1‐(3‐hexenyl)‐3‐methyl imidazolium iodide and 5.93 % for 1‐(3‐butenyl)‐3‐methyl imidazolium iodide electrolyte, which is much higher than that of 5.17 % with the counterpart 1‐hexyl‐3‐methyl imidazolium iodide electrolyte.  相似文献   

4.
Imidazolium cations are promising candidates for preparing anion‐exchange membranes because of their good alkaline stability. Substitution of imidazolium cations is an efficient way to improve their alkaline stability. By combining density functional theory calculations with experimental results, it is found that the LUMO energy correlates with the alkaline stability of imidazolium cations. The results indicate that alkyl groups are the most suitable substituents for the N3 position of imidazolium cations, and the LUMO energies of alkyl‐substituted imidazolium cations depend on the electron‐donating effect and the hyperconjugation effect. Comparing 1,2‐dimethylimidazolium cations (1,2‐DMIm+) and 1,3‐dimethylimidazolium cations (1,3‐DMIm+) with the same substituents reveals that the hyperconjugation effect is more significant in influencing the LUMO energy of 1,3‐DMIms. This investigation reveals that LUMO energy is a helpful aid in predicting the alkaline stability of imidazolium cations.  相似文献   

5.
The ability of a mixture of an ethoxy-modified trisiloxane (a silicone surfactant, named Ag-64) and a block copolymer F127 to disperse carbon nanotubes (CNTs) was investigated by experimental investigation and molecular dynamics simulation. Dispersions with large amounts of individual CNTs were obtained. The quantity of dispersed CNTs was obviously larger than each quantity of the dispersions with individual surfactants at the same concentration, even exceeded the sum of them. The mechanism of dispersing CNTs was also discussed. It can be inferred that Ag-64 and few F127 could wrap onto the surface of CNTs to dispart clusters to individuals, and the other F127 interact with adsorbed Ag-64 and F127 to generate stronger steric stabilization. Thus, a synergistic effect on dispersing CNTs by the mixture of Ag-64 and F127 was observed.  相似文献   

6.
A novel poly(para‐phenylene) containing imidazolium cation, poly[2,5‐bis[4‐(3‐methyl‐1‐imidazolium)‐butyloxy)‐1,4‐benzene dihexafluorophosphate] (PPP‐IL), has been synthesized.  相似文献   

7.
《中国化学》2017,35(12):1875-1880
To improve the dispersion of carbon nanotubes (CNTs) and flame retardancy of layered double hydroxide (LDH) in epoxy resin (EP), organic nickel‐iron layered double hydroxide (ONiFe‐LDH‐CNTs) hybrids were assembled through co‐precipitation. These hybrids were further used as reinforcing filler in EP. EP/ONiFe‐LDH‐CNTs nanocomposites containing 4 wt% of ONiFe‐LDH‐CNTs with different ratios of ONiFe‐LDH and CNTs were prepared by ultrasonic dispersion and program temperature curing. The structure and morphology of the obtained hybrids were characterized by different techniques. The dispersion of nanofillers in the EP matrix was observed by transmission electron microscopy (TEM). The results revealed a coexistence of exfoliated and intercalated ONiFe‐LDH‐ CNTs in polymer matrix. Strong combination of the above nanofillers with the EP matrix provided an efficient thermal and flame retardant improvement for the nanocomposites. It showed that EP/ONiFe‐LDH‐CNTs nanocomposites exhibited superior flame retardant and thermal properties compared with EP. Such improved thermal properties could be attributed to the better homogeneous dispersion, stronger interfacial interaction, excellent charring performance of ONiFe‐LDH and synergistic effect between ONiFe‐LDH and CNTs.  相似文献   

8.
Magnetic carbon nanotube‐supported imidazolium ionic liquid (CNT‐Fe3O4‐IL) was synthesized and investigated using various characterization techniques, including Fourier transform infrared and Raman spectroscopies, X‐ray diffraction, vibrating sample magnetometry, scanning and transmission electron microscopies, and thermogravimetric and differential thermal analyses. In order to synthesize the CNT‐Fe3O4‐IL nanocomposites, Fe3O4‐decorated multi‐walled CNTs were modified with 1‐methyl‐3‐(3‐trimethoxysilylpropyl)‐1H‐imidazol‐3‐ium chloride. This catalytic system was found to be a highly stable, active, reusable and solid‐phase catalyst for the synthesis of 2‐aminothiazoles via the one‐pot reaction of ketone, thiourea and N‐bromosuccinimide under mild conditions. Immobilized magnetic ionic liquid catalysis combines the advantages of ionic liquid media with magnetic solid support nanomaterials which enables the application of nanotechnology and green chemistry in chemical processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, we reported the synergistic effect of functional carbon nanotubes (CNTs) and graphene oxide (GO) on the anticorrosion performance of epoxy coating. For this purpose, the GO and CNTs were firstly modified by the 3‐aminophenoxyphthalonitrile to realize the nitrile functionalized graphene oxides (GO‐CN) and carbon nanotubes (CNTs‐CN). As modified GO‐CN and CNTs‐CN were characterized and confirmed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and gravimetric analyzer. It was found that about 19 and 24 wt% of 3‐aminophenoxyphthalonitrile were grafted onto the surface of the GO and CNTs, respectively. The electrochemical impedance spectroscopy results showed that the GO‐CN&CNTs‐CN hybrid materials exhibit a remarkable superiority in enhancing the anticorrosion performance of epoxy coatings. Significant synergistic effect of the lamellar structural GO‐CN and CNTs‐CN on the anticorrosion performance of epoxy composite coatings was designed. Besides, the epoxy coating with 1 wt% of the GO‐CN&CNTs‐CN hybrid exhibited the best anticorrosion performance, in which the impedance showed the largest one (immersion in 3.5 wt% of NaCl solution for 168 hr). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Herein we demonstrate the synthesis of a helicene‐based imidazolium salt. The salt was prepared by starting from racemic 2‐methyl[6]helicene, which undergoes radical bromination to yield 2‐(bromomethyl)[6]helicene. Subsequent treatment with 1‐butylimidazole leads to the corresponding salt 1‐butyl‐3‐(2‐methyl[6]helicenyl)‐imidazolium bromide. The prepared salt was subsequently characterized by using NMR spectroscopy and X‐ray analysis, various optical spectrometric techniques, and computational chemistry tools. Finally, the imidazolium salt was immobilized onto a SiO2 substrate as a crystalline or amorphous deposit. The deposited layers were used for the development of organic molecular semiconductor devices and the construction of a fully reversible humidity sensor.  相似文献   

11.
By using three synthetic protocols, a series of fluorocarbon and hydrocarbon N‐heterocyclic imidazole‐based liquid crystals (LCs) and related imidazolium‐based ionic liquid crystals (ILCs) have been prepared. The ring size of the N‐heterocycle and the length of the N‐terminal chain (on the imidazolium unit in the ILCs) were modified, and the influence of these structural parameters on liquid‐crystal phases was investigated by means of polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and X‐ray diffraction (XRD). These new ILCs exhibit a disordered smectic phase (SmA), good thermal stabilities, a broad smectic phase range, a high dipole moment, relatively low melting points, but high clearing points and strong emission fluorescence relative to imidazole‐based LCs. These encouraging results have led us to believe these fluorocarbon and hydrocarbon N‐heterocyclic imidazole‐based LCs and related imidazolium‐based ILCs could be used as new liquid‐crystalline materials.  相似文献   

12.
A series of thioether‐functionalised imidazolium salts have been prepared and characterized. Subsequent reaction of the thioether‐functionalised imidazolium salts with iodomethane affords imidazolium–sulfonium salts composed of doubly charged cations and two different anions. Imidazolium–sulfonium salts containing a single anion type are obtained either by a solvent extraction method or by anion exchange. The imidazolium–sulfonium salts undergo a methyl‐transfer reaction on exposure to water, giving rise to a new, singly charged imidazolium salt with iodide introduced at the 2‐position of the imidazolium ring. Crystal structures of some of the imidazolium–sulfonium salts were determined by X‐ray crystallography providing the topology of the interactions between the dications and the anions. Electrospray ionization mass spectrometry and quantum‐chemical calculations were used to rationalise the relative strength of these interactions.  相似文献   

13.
In this contribution the first examples of so‐called rigid‐core, T‐shaped imidazolium ionic liquid crystals, in which the C‐2 atom of the imidazolium ring is substituted with an aryl moiety decorated with one or two alkoxy chains, are described. The length of the alkoxy chain(s) was varied from six to eighteen carbon atoms (n=6, 10, 14–18). Whereas the compounds with one long alkoxy chain display only smectic A phases, the salts containing two alkoxy chains exhibit smectic A, multicontinuous cubic, as well as hexagonal columnar phases, as evidenced by polarising optical microscopy, differential scanning calorimetry, and powder X‐ray diffraction. Structural models are proposed for the self‐assembly of the molecules within the mesophases. The imidazolium head groups and the iodide counterions were found to adopt a peculiar orientation in the central part of the columns of the hexagonal columnar phases. The enantiotropic cubic phase shown by the 1,3‐dimethyl‐2‐[3,4‐bis(pentadecyloxy)phenyl]imidazolium iodide salt has a multicontinuous Pm$\bar 3In this contribution the first examples of so-called rigid-core, T-shaped imidazolium ionic liquid crystals, in which the C-2 atom of the imidazolium ring is substituted with an aryl moiety decorated with one or two alkoxy chains, are described. The length of the alkoxy chain(s) was varied from six to eighteen carbon atoms (n=6, 10, 14-18). Whereas the compounds with one long alkoxy chain display only smectic A phases, the salts containing two alkoxy chains exhibit smectic A, multicontinuous cubic, as well as hexagonal columnar phases, as evidenced by polarising optical microscopy, differential scanning calorimetry, and powder X-ray diffraction. Structural models are proposed for the self-assembly of the molecules within the mesophases. The imidazolium head groups and the iodide counterions were found to adopt a peculiar orientation in the central part of the columns of the hexagonal columnar phases. The enantiotropic cubic phase shown by the 1,3-dimethyl-2-[3,4-bis(pentadecyloxy)phenyl]imidazolium iodide salt has a multicontinuous Pm ?3m structure. To the best of our knowledge, this is the first example of a thermotropic cubic mesophase of this symmetry.  相似文献   

14.
Two kinds of hybrids based on diallyl bisphenol A modified bismaleimide (BMI‐BA) and carbon nanotubes (CNTs) or aminated carbon nanotubes (A‐CNTs) were prepared, their static and dynamic mechanical properties were investigated in detail by using impact and flexural measurements as well as dynamic mechanical analysis (DMA). Results show that these mechanical properties of hybrids greatly depended on the nature (or the functional groups on CNTs) and loading in BMI‐BA matrix of hybrids. For example, the BMI‐BA/A‐CNT hybrid with a desirable amount of A‐CNTs has a higher impact strength than the original BMI‐BA resin, while all BMI‐BA/CNT hybrids have lower impact strength than the original BMI‐BA resin. DMA test shows that all hybrids have somewhat lower storage modulus and glass transition temperature than a pure polymer, which maybe attributed to the fact that both CNTs and A‐CNTs shift the curing peak to a higher temperature range and thus decrease the crosslinking density of networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The anchoring of small‐sized WN (tungsten nitride) nanoparticles (NPs) with good dispersion on carbon nanotubes (CNTs) offers an effective means of obtaining promising materials for use in electrocatalysis. Herein, an effective method based on grinding treatment followed by a nitridation process is proposed to realize this goal. In the synthesis, a solution containing H4[SiO4(W3O9)4] (SiW12) and CNTs modified with polyethylenimine (PEI‐CNTs) was ground to dryness. Small‐sized WN NPs were anchored onto the CNTs with good dispersion after calcination under NH3. Under hydrothermal assembly conditions (absence of grinding), WN particles of larger size and with inferior dispersion were obtained, demonstrating the important role of the grinding process. The benefit of the small‐sized WN has been demonstrated by using WN/CNTs as a support for Pt to catalyze the methanol electro‐oxidation reaction. The mass activity of Pt‐WN/CNTs‐G‐70 (where G denotes the grinding treatment, and 70 is the loading amount (%) of WN in the WN/CNTs) was evaluated as about 817 mA mg?1Pt, better that those of commercial Pt/C (340 mA mg?1Pt) and Pt/CNTs (162 mA mg?1Pt). The Pt‐WN/CNTs‐G also displayed good CO tolerance. In contrast, Pt‐WN/CNTs prepared without the grinding process displayed an activity of 344 mA mg?1Pt, verifying the key role of grinding treatment in the preparation of WN/CNTs with good co‐catalytic effect.  相似文献   

16.
In the crystal structure of the title compound, C13H13N3O, the C—Nimidazole bond length of 1.431 (3) Å is shorter than that observed [1.466 (6) Å] in the corresponding carbamoyl­imidazolium salt 3‐methyl‐1‐(1,2,3,4‐tetra­hydro­isoquinolin‐2‐yl­carbonyl)­imidazolium iodide. A comparision of these compounds is used to highlight the structural differences that occur as a result of the imidazolium effect. Weak C—H⋯O hydrogen bonds link mol­ecules into extended tapes in the a direction.  相似文献   

17.
Functionalized carbon nanotubes (F‐CNTs) were synthesized through the nucleophilic substitution reaction between four‐armed star poly(d ‐lactide) (4PDLA) and acryl chloride of carbon nanotubes and were characterized using Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy and thermogravimetric analysis. The results indicated that the 4PDLA was successfully grafted onto carbon nanotubes, and it contained 45.5 wt% of 4PDLA. Poly(l ‐lactide) (PLLA) nanocomposites with different F‐CNTs content were prepared by solution casting. Optical microscopy and scanning electron microscopy results showed that F‐CNTs were uniformly dispersed in the nanocomposites. Crystallization behavior and crystal structure of PLLA nanocomposites were investigated using differential scanning calorimetry, polarizing microscope and X‐ray diffraction. The results found that poly(lactide) stereocomplex crystal could be formed between PLLA and F‐CNTs. F‐CNTs played different roles in the process of solution casting and melting crystallization. Polarizing microscope also revealed that crystallization temperature had a significant effect on the nucleation and spherulites growth of PLLA. Thermal stability and mechanical properties of the nanocomposites were also investigated by thermogravimetric analysis, dynamic mechanical analysis and tensile testing. These results demonstrated that the addition of F‐CNTs obviously improved thermal stability and tensile strength of PLLA. The results showed that PLLA/F‐CNTs would have potential values in engineering fields. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
We have developed a novel synthetic method that enables us to easily synthesize metal‐capsulated carbon nanotubes (CNTs) in a laboratory by using a combined technology of electrospinning‐metallization and microwave heating. These techniques greatly shorten the time for the synthesis of the CNTs in comparison with the conventional methods. TEM analysis confirmed a successful formation of the CNTs, and the resulting CNTs were multi‐walled and found to be about 25–100 nm in diameters. The products prepared by heating at 600 and 900°C exhibited less‐developed and strongly curved CNTs, whereas the products prepared by heating at 700 and 800°C relatively well‐developed long CNTs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Meng Wang  Xiang Li  Li Liu 《中国化学》2012,30(5):1022-1026
Three‐component framework of cucurbit[6]uril, 3‐(1‐methylimidazolium‐3‐yl)propane‐1‐sulfonate and boric acid has been constructed. The crystal structure reveals 1:2 host‐guest motif of cucurbit[6]uril and 3‐(1‐methyl‐imidazolium‐3‐yl)propane‐1‐sulfonate, demonstrating both cation binding of imidazolium moiety and anion binding of sulfonate moiety for the first time. Incorporation of dimeric boric acid facilitates the formation of metal‐free three‐dimensional framework.  相似文献   

20.
Carbon nanotubes (CNTs) were non‐covalently functionalized with chitosan (Chit) and then employed as the support for PtRu nanoparticles. The functionalization was carried out at room temperature without the use of corrosive acids, thereby preserving the integrity and the electronic conductivity of the CNTs. Transmission electron microscopy reveals that PtRu nanoparticles were highly dispersed on the surface of Chit‐functionalized CNTs (CNT‐Chit) with small particle‐size. Cyclic voltammetry studies indicated that the PtRu nanoparticle/CNT‐Chit nanohybrids have a higher electrochemical surface area, electrocatalytic performance, and stability towards methanol oxidation compared to PtRu nanoparticles supported on the pristine CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号