首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
MP1 is a novel marinopyrrole analogue with activity in MYCN amplified neuroblastoma cell lines. A rapid, selective, and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for quantitation of MP1 in mouse plasma. Analyte separation was achieved using a Waters Acquity UPLC®BEH C18 column (1.7 µm, 100 × 2.1 mm). Mobile phase consisted of 0.1% acetic acid in water (10%) and methanol (90%) at a total flow rate of 0.25 mL/min. The mass spectrometer was operated at unit resolution in the multiple reaction monitoring (MRM) mode, using precursor ion > product ion transitions of 324.10 > 168.30 m/z for MP1 and 411.95 > 224.15 m/z for PL-3. The MS/MS response was linear over the concentration range from 0.2–500 ng/mL for MP1, correlation coefficient (r2) of 0.988. Precision (% RSD) and accuracy (% bias) were within the acceptable limits as per FDA guidelines. MP1 was stable under storage and laboratory handling conditions. The validated method was successfully applied to assess the solubility, in-vitro metabolism, plasma protein binding, and bio-distribution studies of MP1.  相似文献   

2.
In the present study, a sensitive and fully validated bioanalytical high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed for the quantitative determination of three newly synthesized carbonic anhydrases inhibitors (CAIs) with potential antitumor activity in human plasma. The analytes and the internal standard (IS) were extracted using 1.5 mL acetonitrile from only 450 µL aliquots of human plasma to achieve the desired protein precipitation. Chromatographic separations were achieved on Phenomenex Kinetex® C18 column (100 × 4.6 mm, 2.6 µm) using a binary gradient elution mode with a run time of less than 6 min. The mobile phase consisted of solvent (A): 0.1% formic acid in 50% methanol and solvent B: 0.1% formic acid in acetonitrile (30:70, v/v), pumped at a flow rate of 0.8 mL/min. Detection was employed using triple quadrupole tandem mass spectrometer (API 3500) equipped with an electrospray ionization (ESI) source in the positive ion mode. Multiple reaction monitoring (MRM) mode was selected for quantitation through monitoring the precursor-to-parent ion transition at m/z 291.9 → 173.0, m/z 396.9 → 225.1, m/z 388.9 → 217.0, and m/z 146.9 → 91.0 for AW-9a, WES-1, WES-2, and Coumarin (IS), respectively. Linearity was computed using the weighted least-squares linear regression method (1/x2) over a concentration range of 1–1000, 2.5–800, and 5–500 ng/mL for AW-9a, WES-1, and WES-2; respectively. The bioanalytical LC-MS/MS method was fully validated as per U.S. Food and Drug Administration (FDA) guidelines with all respect to linearity, accuracy, precision, carry-over, selectivity, dilution integrity, and stability. The proposed LC-MS/MS method was applied successfully for the determination of all investigated drugs in spiked human plasma with no significant matrix effect, which is a crucial cornerstone in further therapeutic drug monitoring of newly developed therapeutic agents.  相似文献   

3.
In this study, a magnetic solid-phase extraction (MSPE) method coupled with High-Performance Liquid Chromatography Mass Spectrometry (HPLC–MS/MS) for the determination of illegal basic dyes in food samples was developed and validated. This method was based on Magnetic sulfonated reduced graphene oxide (M-S-RGO), which was sensitive and selective to analytes with structure of multiaromatic rings and negatively charged ions. Several factors affecting MSPE efficiency such as pH and adsorption time were optimized. Under the optimum conditions, the calibration curves exhibited good linearity, ranging from 5 to 60 µg/g with correlation coefficients >0.9950. The limits of detection of 16 basic dyes were in the range of 0.01–0.2 µg/L. The recoveries ranged from 70% to 110% with RSD% < 10%. The results indicate that M-S-RGO is an efficient and selective adsorbent for the extraction and cleanup of basic dyes. Due to the MSPE procedures, matrix effect and interference were eliminated in the analysis of HPLC–MS/MS without the matrix-matched standards. Thus, validation data showed that the proposed MSPE–HPLC–MS/MS method was rapid, efficient, selective, and sensitive for the determination of illegal basic dyes in foods.  相似文献   

4.
A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed to determine voriconazole in human plasma. Sample preparation was accomplished through a simple one‐step protein precipitation with methanol. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using an isocratic mobile phase system composed of acetonitrile and water containing 1% formic acid (45:55, v/v) at a flow rate of 0.50 mL/min. Mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 351.0 → 281.5 and m/z 237.1 → 194.2 were used to quantify voriconazole and carbamazepine (internal standard), respectively. The linearity of this method was found to be within the concentration range of 2.0–1000 ng/mL with a lower limit of quantification of 2.0 ng/mL. Only 1.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after oral administration of 200 mg voriconazole to 20 Chinese healthy male volunteers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive LC–MS/MS method was developed and validated for quantitation of saroglitazar using turboion spray interface with positive ion mode. A liquid–liquid extraction, with a mixture of dichloromethane and diethyl ether, was employed for the extraction of saroglitazar and glimepiride (IS) from human plasma. The chromatographic separation was achieved using an ACE‐5, C18 (4.6 × 100 mm) column with a gradient mobile phase comprising acetonitrile and ammonium acetate buffer with trifluoracetic acid in purified water. Both analytes were separated within 10 min with retention times of 4.52 and 2.57 min for saroglitazar and IS, respectively. Saroglitazar quantitation was achieved by the summation of two MRM transition pairs (m/z 440.2 to m/z 366.0 and m/z 440.2 to m/z 183.1), while that of IS was achieved using transition pair m/z 491.3 to m/z 352.0. The calibration standards of saroglitazar showed linearity from 0.2 to 500 ng/mL, with a lower limit of quantitation of 0.2 ng/mL. The biases for inter‐ and intra‐batch assays were ?7.51–1.15% and ?11.21 to ?3.25%, respectively, while the corresponding precisions were 5.04–8.06% and 1.53–7.68%, respectively. The developed method was used to monitor the plasma concentrations of saroglitazar in clinical samples.  相似文献   

6.
A rapid and highly sensitive liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method for determination of dapiprazole on rat dried blood spots and urine was developed and validated. The chromatographic separation was achieved on a reverse‐phase C18 column (250 × 4.6 mm i.d., 5 µm), using 20 mm ammonium acetate (pH adjusted to 4.0 with acetic acid) and acetonitrile (80:20, v/v) as a mobile phase at 25 °C. LC‐MS detection was performed with selective ion monitoring using target ions at m/z 326 and m/z 306 for dapiprazole and mepiprazole used as internal standard, respectively. The calibration curve showed a good linearity in the concentration range of 1–3000 ng/mL. The effect of hematocrit on extraction of dapiprazole from DBS was evaluated. The mean recoveries of dapiprazole from DBS and urine were 93.88 and 90.29% respectively. The intra‐ and inter‐day precisions were <4.19% in DBS as well as urine. The limits of detection and quantification were 0.30 and 1.10 ng/mL in DBS and 0.45 and 1.50 ng/mL in urine samples, respectively. The method was validated as per US Food and Drug Administration guidelines and successfully applied to a pharmacokinetic study of dapiprazole in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A rapid and validated method for analysis of levosulpiride in human plasma using liquid chromatography coupled to tandem mass spectrometry was developed. Levosulpiride and tiapride (IS, internal standard) were extracted from alkalized plasma samples with ethylacetate and separation by RP‐HPLC. Detection was performed by positive ion electrospray ionization in multiple‐reaction monitoring mode, monitoring the transitions m/z 342.1 → m/z 112.2 and m/z 329.1 → m/z 213.2, for quantification of levosulpiride and IS, respectively. The standard calibration curves showed good linearity within the range of 2–200 ng/mL (r2 ≥ 0.9990). The lower limit of quantitation was 2 ng/mL. The retention times of levosulpiride (0.63 min) and IS (0.66 min) presented a significant time saving benefit of the proposed method. No significant metabolic compounds were found to interfere with the analysis. This method offered good precision and accuracy and was successfully applied for the pharmacokinetic and bioequivalence study of a 25 mg of levosulpiride tablet in 24 healthy Korean volunteers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A selective, sensitive and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the determination of tigecycline (TGC) in human plasma, using tigecycline‐d9 as an internal standard (IS). Analytical samples were prepared using a protein precipitation method coupled with a concentration process. The analyte and IS were separated on a reversed‐phase Waters Acquity UPLC® BEH‐C18 column (2.1 × 50 mm i.d., 1.7 μm) with a flow rate of 0.25 mL/min. The mobile phase consisted of water, containing 0.2% formic acid (v/v) with 10 mm ammonium formate (A) and acetonitrile (B). The mass spectrometer was operated in selected reaction monitoring mode through electrospray ionization ion mode using the transitions of m/z 586.2 → 513.1 and m/z 595.1 → 514.0 for TGC and IS, respectively. The linearity of the method was in the range of 10–5000 ng/mL. Intra‐ and inter‐batch precision (CV) for TGC was <9.27%, and the accuracy ranged from 90.06 to 107.13%. This method was successfully applied to the analysis of samples from hospital‐acquired pneumonia patients treated with TGC, and a validated population pharmacokinetic model was established. This developed method could be useful to predict pharmacokinetics parameters and valuable for further pharmacokinetics/pharmacodynamics studies.  相似文献   

9.
A simple, practical, accurate and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and fully validated for the quantitation of guanfacine in beagle dog plasma. After protein precipitation by acetonitrile, the analytes were separated on a C18 chromatographic column by methanol and water containing 0.1% (v/v) formic acid with a gradient elution. The subsequent detection utilized a mass spectrometry under positive ion mode with multiple reaction monitoring of guanfacine and enalaprilat (internal standard) at m/z 246.2 → 159.0 and m/z 349.2 → 205.9, respectively. Good linearity was obtained over the concentration range of 0.1–20 ng/mL for guanfacine in dog plasma and the lower limit of quantification of this method was 0.1 ng/mL. The intra‐ and inter‐day precisions were <10.8% relative standard deviation with an accuracy of 92.9–108.4%. The matrix effects ranged from 89.4 to 100.7% and extraction recoveries were >90%. Stability studies showed that both analytes were stable during sample preparation and analysis. The established method was successfully applied to an in vivo pharmacokinetic study in beagle dogs after a single oral dose of 4 mg guanfacine extended‐release tablets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid, simple and fully validated LC‐MS/MS method was developed and validated for the determination of megestrol acetate in human plasma using tolbutamide as an internal standard (IS) after one‐step liquid–liquid extraction with methyl‐tert‐butyl‐ether. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the transitions m/z 385.5 → 267.1 for megestrol acetate and m/z 271.4 → 155.1 for IS. Chromatographic separation was performed on a YMC Hydrosphere C18 column with an isocratic mobile phase, which consisted of 10 mm ammonium formate buffer (adjusted to pH 5.0 with formic acid)–methanol (60:40, v/v) at a flow rate of 0.4 mL/min. The achieved lower limit of quantitation (LLOQ) was 1 ng/mL (signal‐to‐noise ratio > 10) and the standard calibration curve for megestrol acetate was linear (r > 0.99) over the studied concentration range (1–2000 ng/mL). The proposed method was fully validated by determining its specificity, linearity, LLOQ, intra‐ and inter‐day precision and accuracy, recovery, matrix effect and stability. The validated LC‐MS/MS method was successfully applied for the evaluation of pharmacokinetic parameters of megestrol acetate after oral administration of a single dose 800 mg of megestrol acetate (Megace?) to five healthy Korean male volunteers under fed conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Sirolimus is a hydrophobic macrolide compound that has been used for long-term immunosuppressive therapy, prevention of restenosis, and treatment of lymphangioleiomyomatosis. In this study, a simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated for the simultaneous determination of sirolimus in both porcine whole blood and lung tissue. Blood and lung tissue homogenates were deproteinized with acetonitrile and injected into the LC-MS/MS system for analysis using the positive electrospray ionization mode. The drug was separated on a C18 reversed phase column with a gradient mobile phase (ammonium formate buffer (5 mM) with 0.1% formic acid and acetonitrile) at 0.2 mL/min. The selected reaction monitoring transitions of m/z 931.5 → 864.4 and m/z 809.5 → 756.5 were applied for sirolimus and ascomycin (the internal standard, IS), respectively. The method was selective and linear over a concentration range of 0.5–50 ng/mL. The method was validated for sensitivity, accuracy, precision, extraction recovery, matrix effect, and stability in porcine whole blood and lung tissue homogenates, and all values were within acceptable ranges. The method was applied to a pharmacokinetic study to quantitate sirolimus levels in porcine blood and its distribution in lung tissue following the application of stents in the porcine coronary arteries. It enabled the quantification of sirolimus concentration until 2 and 14 days in blood and in lung tissue, respectively. This method would be appropriate for both routine porcine pharmacokinetic and bio-distribution studies of sirolimus formulations.  相似文献   

12.
A specific and sensitive LC‐MS/MS assay was developed to simultaneously quantify three structurally similar flavonoid glycosides – hyperin, reynoutrin and guaijaverin – in mouse plasma. Biosamples were prepared by solid‐phase extraction. Isocratic chromatographic separation was performed on an AichromBond‐AQ C18 column (250 × 2.1 mm, 5 μm) with methanol–acetonitrile–water–formic acid (20:25:55:0.1) as the mobile phase. Detection of hyperin, reynoutrin, guaijaverin and internal standard [luteolin‐7‐Oβ‐d ‐apiofuranosyl‐(1 → 6)‐β‐d ‐glucopyranoside] was achieved by ESI‐MS/MS in the negative ion mode using m/z 463 → m/z 300, m/z 433 → m/z 300, m/z 433 → m/z 300 and m/z 579 → m/z 285 transitions, respectively. Linear concentration ranges of calibration curves were 4.0–800.0 ng/mL for hyperin and reynoutrin and 8.0–1600.0 ng/mL for guaijaverin when 100 μL of plasma was analyzed. We used this validated method to study the pharmacokinetics of hyperin, reynoutrin and guaijaverin in mice following oral and intravenous administration. All three quercetin‐3‐O‐glycosides showed poor oral absorption in mice, and the absolute bioavailability of hyperin after oral administration of 100 mg/kg was 1.2%. Pretreatment with verapamil increased the peak concentration and area under the concentration–time curve of hyperin, which were significantly higher than the control values. The half‐life of hyperin with verapamil was significantly prolonged compared with that of the control. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
1‐Triacontanol (TA), a member of long chain fatty alcohol, has recently been received great attention owing to its antitumor activity. In this study, an accurate, sensitive and selective gas chromatography–tandem mass spectrometry method was developed and validated for the quantification of TA in beagle plasma using 1‐octacosanal as the internal standard (IS) for the first time. With temperature programming, chromatographic separation was carried out on an HP‐5MS column, using helium as carrier gas and argon as collision gas, both at a flow rate of 1 mL/min. TA was analyzed using positive ion electrospray ionization in multiple‐reaction monitoring mode, with the precursor to product ion transitions of m/z 495.6 → 97.0 and m/z 467.5 → 97.0 for TA and the IS, respectively. The lower limit of quantitation, linearity, intra‐ and interday precision, accuracy, stability, extraction recovery and matrix effect of TA were within the acceptable limits. The validated method was successfully applied to a pharmacokinetic study of TA in beagles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Macitentan is an endothelin receptor antagonist commonly used in the treatment of pulmonary arterial hypertension (PAH). A novel, rapid, simple and sensitive UPLC–MS/MS method was developed and validated for pharmacokinetic study and the determination of macitentan in PAH patients. Macitentan and bosentan, which are used as internal standards, were detected using atmospheric pressure chemical ionization in positive ion and multiple reaction monitoring mode by monitoring the mass transitions m/z 589.1 → 203.3 and 552.6 → 311.5, respectively. Chromatographic separation was performed on a reverse‐phase C18 column (5 μm, 4.6 × 150 mm) with an isocratic mobile phase, which consisted of water containing 0.2% acetic acid–acetonitrile (90:10, v/v) at a flow rate of 1 mL/min. Retention times were 1.97 and 1.72 min for macitentan and IS, respectively. The calibration curve with high correlation coefficient (0.9996) was linear in the range 1–500 ng/mL. The lower limit of quantitation and average recovery values were determined as 1 ng/mL and 89.8%, respectively. This method is the first UPLC–MS/MS method developed and validated for the determination of macitentan from human plasma. The developed analytical method was fully validated for linearity, selectivity, specificity, accuracy, precision, sensitivity, stability, matrix effect and recovery according to US Food and Drug Administration guidelines. The developed method was applied successfully for pharmacokinetic study and the determination of macitentan in PAH patients.  相似文献   

15.
A prodrug of tapentadol, namely tapentadol carbamate (WWJ01), was synthesized to improve the bioavailability of tapentadol owing to its extensive first‐pass metabolism. In this study, a highly rapid and sensitive UPLC‐MS/MS method was developed and validated for the simultaneous determination of tapentadol and WWJ01 in rat plasma with fluconazole as an internal standard. The analytes and internal standard were treated by methanol and then separated on a Phenomenex Kinetex® XB‐C18 (2.1 × 50 mm × 2.6 μm) column at a flow rate of 0.3 mL/min. The mobile phase comprised methanol and water with a gradient elution. The mass transition ion‐pairs were m/z 222.2 → 107.0, m/z 293.2 → 71.9 and m/z 307.1 → 220.0 for tapentadol, WWJ01 and IS, respectively. Excellent linearity was observed over the concentration range of 2–1250 ng/mL (r = 0.995) with a lower limit of quantification of 2 ng/mL for both tapentadol and WWJ01. The intra‐ and inter‐day accuracy and precision for all quality control samples were within ±15%. The validated method was accurate, rapid and reproducible, and was successfully applied to a pharmacokinetic study of tapentadol and WWJ01.  相似文献   

16.
A selective, rapid, and sensitive liquid chromatography–tandem mass spectrometry(LC‐MS/MS) method was developed and validated for the determination of letrozole (LTZ) in human plasma, using anastrozole as internal standard (IS). Sample preparation was performed by one‐step protein precipitation with methanol. The analyte and IS were chromatographed on a reversed‐phase YMC‐ODS‐C18 column (2.0 × 100 mm i.d., 3 µm) with a flow rate of 0.3 mL/min. The mobile phase consisted of water containing 0.1% formic acid (v/v) and methanol containing 0.1% formic acid (v/v). The mass spectrometer was operated in selected reaction monitoring mode through electrospray ionization ion mode using the transitions of m/z 286.2 → 217.1 for LTZ and m/z 294.1 → 225.1 for IS, respectively. The method was validated for selectivity, linearity, lower limit of quantitation, precision, accuracy, matrix effects and stability in accordance with the US Food and Drug Administration guidelines. Linear calibration curves were 1.0–60.0 ng/mL. Intra‐ and inter‐batch precision (CV) for LTZ were <9.34%, and the accuracy ranged from 97.43 to 105.17%. This method was successfully used for the analysis of samples from patients treated with LTZ in the dose of 2.5 mg/day. It might be suitable for therapeutic drug monitoring of these patients and contribute to predict the risk of adverse reactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A bioanalytical method was developed and validated to estimate donepezil, 6‐desmethyl donepezil and 5‐desmethyl donepezil simultaneously in human plasma using galantamine as an internal standard (IS). The chromatographic separation was achieved on a reverse‐phase XTerra RP (150 × 4.6 mm, 5 µm) column without affecting recovery (mean recovery > 60% with CV < 10%) for all analytes. ESI‐MS/MS multiple reaction monitoring in positive polarity was used to detect mass pairs for donepezil (m/z 380.3 → 91.3), 6‐desmethyl donepezil (m/z 366.4 → 91.3), 5‐desmethyl donepezil (m/z 366.4 → 91.3) and galantamine m/z (288.1 → 213.0). The linearity was established over a dynamic range of 0.339–51.870, 0.100–15.380 and 0.103–15.763 ng/mL for donepezil, 6‐desmethyl donepezil and 5‐desmethyl donepezil, respectively. The current method shows that minimal conversion of labile metabolites to parent donepezil in plasma as stability was successfully achieved for 211 days at ?15 °C storage temperature. The method was successfully applied to a clinical study after administration of 10 mg donepezil tablets to healthy male Indian volunteers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The main objective of our current study is to develop and validate an accurate and direct ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method to simultaneously detect plasma concentrations of tofacitinib and its metabolite M9, and to study the pharmacokinetic profiles of the two compounds in beagle dogs. After rapid precipitation of protein by adding acetonitrile, the chromatographic separation of tofacitinib was completed, as well as M9 and upadacitinib (internal standard, IS) by using an Acquity BEH C18 (1.7 μm, 2.1 mm × 50 mm) column. A Xevo TQ-S triple quadrupole tandem mass spectrometer was employed to determine their concentrations under the positive ion pattern. Selective reaction monitoring (SRM) was used with ion transitions at m/z 313.12 → 148.97 for tofacitinib, m/z 329.10 → 137.03 for M9, and m/z 380.95 → 255.97 for IS, respectively. This assay demonstrated excellent linearity, and the ranges of calibration curves for both tofacitinib and M9 were 0.5–400 ng/mL. The new UPLC-MS/MS assay can reach the values (0.5 ng/mL) of lower limit of quantification (LLOQ) for both tofacitinib and M9. Both intra-day and inter-day accuracy of all analytes ranged from ?12.0% to 14.3%, while the precision was ≤13.2%. The recovery rate of all analytes was >88.5%, and more importantly there was no conspicuous matrix effect. In addition, the stability was consistent with the quantificative requirements of plasma samples under all conditions. Finally, the assay on UPLC-MS/MS is able to be employed to determine the pharmacokinetic characteristics of tofacitinib and its metabolite M9 in the plasma of beagle dogs after taking orally a dose of tofacitinib at 2 mg/kg.  相似文献   

19.
Active and passive smoking are serious public health concerns Assessment of tobacco smoke exposure using effective biomarkers is needed. In this study, we developed a simultaneous determination method of five tobacco-specific nitrosamines (TSNAs) in hair by online in-tube solid-phase microextraction (SPME) coupled to liquid chromatography-tandem mass spectrometry (LC–MS/MS). TSNAs were extracted and concentrated on Supel-Q PLOT capillary by in-tube SPME and separated and detected within 5 min by LC–MS/MS using Capcell Pak C18 MGIII column and positive ion mode multiple reaction monitoring systems. These operations were fully automated by an online program. The calibration curves of TSNAs showed good linearity in the range of 0.5–1000 pg mL–1 using their stable isotope-labeled internal standards. Moreover, the limits of detection (S/N = 3) of TSNAs were in the range of 0.02–1.14 pg mL–1, and intra-day and inter-day precisions were below 7.3% and 9.2% (n = 5), respectively. The developed method is highly sensitive and specific and can easily measure TSNA levels using 5 mg hair samples. This method was used to assess long-term exposure levels to tobacco smoke in smokers and non-smokers.  相似文献   

20.
A precise, high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the determination of fluorochloridone (FLC) in rat plasma. The extraction of analytes from plasma samples was carried out by protein precipitation procedure using acetonitrile prior to UPLC‐MS/MS analysis. Verapamil was proved as a proper internal standard (IS) among many candidates. The chromatographic separation based on UPLC was well optimized. Multiple reaction monitoring in positive electrospray ionization was used with the optimized MS transitions at: m/z 312.0 → 292.0 for FLC and m/z 456.4 → 165.2 for IS. This method was well validated with good linear response (r2 > 0.998) observed over the investigated range of 3–3000 ng/mL and with satisfactory stability. This method was also characterized with adequate intra‐ and inter‐day precision and accuracy (within 12%) in the quality control samples, and with high selectivity and less matrix effect observed. Total running time was only 1.5 min. This method has been successfully applied to a pilot FLC pharmacokinetic study after oral administration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号