首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein design is a useful strategy to interrogate the protein structure‐function relationship. We demonstrate using a highly modular 3‐stranded coiled coil (TRI‐peptide system) that a functional type 2 copper center exhibiting copper nitrite reductase (NiR) activity exhibits the highest homogeneous catalytic efficiency under aqueous conditions for the reduction of nitrite to NO and H2O. Modification of the amino acids in the second coordination sphere of the copper center increases the nitrite reductase activity up to 75‐fold compared to previously reported systems. We find also that steric bulk can be used to enforce a three‐coordinate CuI in a site, which tends toward two‐coordination with decreased steric bulk. This study demonstrates the importance of the second coordination sphere environment both for controlling metal‐center ligation and enhancing the catalytic efficiency of metalloenzymes and their analogues.  相似文献   

2.
Spectroscopic and computational methods have been used to determine the protonation state of the edge sulfur ligand in the Cu4S2 CuZ form of the active site of nitrous oxide reductase (N2OR) in its 3CuICuII (1-hole) and 2CuI2CuII (2-hole) redox states. The EPR, absorption, and MCD spectra of 1-hole CuZ indicate that the unpaired spin in this site is evenly delocalized over CuI, CuII, and CuIV. 1-hole CuZ is shown to have a μ2-thiolate edge ligand from the observation of S–H bending modes in the resonance Raman spectrum at 450 and 492 cm–1 that have significant deuterium isotope shifts (–137 cm–1) and are not perturbed up to pH 10. 2-hole CuZ is characterized with absorption and resonance Raman spectroscopies as having two Cu–S stretching vibrations that profile differently. DFT models of the 1-hole and 2-hole CuZ sites are correlated to these spectroscopic features to determine that 2-hole CuZ has a μ2-sulfide edge ligand at neutral pH. The slow two electron (+1 proton) reduction of N2O by 1-hole CuZ is discussed and the possibility of a reaction between 2-hole CuZ and O2 is considered.  相似文献   

3.
Selective substitutions of Fe2(μ‐odt)(CO)6 (odt = 1,3‐oxadithiolate, A ) and small bite‐angle diphosphines (Ph2P)2X [X = CH2 (dppm) or N (CH2CHMe2) (dppa)] have been well investigated in this study. With Me3NO·2H2O in MeCN at room temperature, the reaction of A and dppm produced the monodentate complex [Fe2(μ‐odt)(CO)5(κ1‐dppm)] ( 1 ), whereas the similar reaction with dppa afforded the chelate complex [Fe2(μ‐odt)(CO)4(κ2‐dppa)] ( 2 ). Using UV irradiation in toluene emitting at 365 nm, the treatment of A and dppm rarely resulted in the formation of the bridge complex [Fe2(μ‐odt)(CO)4(μ‐dppm)] ( 3 ), whereas the similar treatment with dppa formed the chelate complex 2 . Under thermolysis condition, refluxing solution of A with dppm or dppa gave the bridge complex 3 and [Fe2(μ‐odt)(CO)4(μ‐dppa)] ( 4 ), respectively, in which the former was formed in toluene (110 °C) but the latter was produced in xylene (138 °C). All the new complexes 1 – 4 obtained above were characterized by element analysis, FT‐IR, NMR (1H, 31P) spectroscopies, and particularly for 1 – 3 by X‐ray crystallography. Furthermore, the in situ protonations of 2 with a weak acid HOAc (acetic acid) and a strong acid TFA (trifluoroacetic acid) are explored by means of FT‐IR and NMR (1H, 31P) spectra. In addition, the electrochemical behaviors of 2 – 4 are studied and compared through cyclic voltammetry (CV) in the absence and presence of a strong acid (TFA) as a proton source, indicating that they all are active for electrocatalytic proton reduction to hydrogen (H2).  相似文献   

4.
In the title centrosymmetric binuclear complex, [Cu2(C14H11N2O3)2(H2O)2](NO3)2, the two metal centres are bridged by the phenolate O atoms of the ligand, forming a Cu2O2 quadrangle. Each Cu atom has a distorted square‐pyramidal geometry, with the basal donor atoms coming from the O,N,O′‐tridentate ligand and a symmetry‐related phenolate O atom. The more weakly bound apical donor O atom is supplied by a coordinated water molecule. When a further weak Cu...O interaction with the 4‐hydroxy O atom of a neighbouring cation is considered, the extended coordination sphere of the Cu atom can be described as distorted octahedral. This interaction leads to two‐dimensional layers, which extend parallel to the (100) direction. The two‐dimensional polymeric structure contrasts with other reported structures involving salicylaldehyde benzoylhydrazone ligands, which are usually discrete mono‐ or dinuclear Cu complexes. The nitrate anions are involved in a three‐dimensional hydrogen‐bonding network, featuring intermolecular N—H...O and O—H...O hydrogen bonds.  相似文献   

5.
In the title salt, catena‐poly[[[aquacopper(II)]‐μ‐3‐(2‐pyridylmethyleneamino)propanoato‐κ4N,N′,O:O′] perchlorate], {[Cu(C9H9N2O2)(H2O)]ClO4}n, the monomeric unit contains a square‐based pyramidal CuII centre. The four basal positions are occupied by a tridentate anionic Schiff base ligand which furnishes an NNO‐donor set, with the fourth basal position being occupied by an O‐donor atom from the carboxylate group of an adjacent Schiff base ligand. The coordination sphere is completed by a water molecule at the apical position. Interestingly, each carboxylate group in the ligand forms a syn–anti‐configured bridge between two CuII centres, leading to left‐handed chiral helicity. The framework also exhibits O—H...O hydrogen bonds involving the water molecules and an O atom of the perchlorate anion.  相似文献   

6.
分别在DFT-B3LYP和MP2/6-311++G**水平上求得HOCl + N2O复合物势能面上的六种(S1, S2, S3, S4, S5和S6)和四种(S1, S2, S4和S5)构型. 频率分析表明,其中的S1和S3为过渡态,其它为稳定构型. 在复合物S3, S5 和S6中,HOCl 单体的σ*(5O-6H)作为质子供体,与N2O单体中作为质子受体的3O原子相互作用,形成氢键结构,而在氢键复合物S2中, 质子受体为N2O单体中的端1N原子;复合物S1中,HOCl分子的σ*(5O-4Cl)作为质子供体与N2O分子中的端1N原子(质子受体)相互作用,形成卤键结构,而复合物S4中的卤键结构的质子受体为N2O分子中的端3O原子. 经B3LYP/6-311++G**水平上的计算,考虑了基组重叠误差(BSSE)校正的单体间相互作用能在-1.56 ~ -8.73 kJ·mol-1之间. 采用自然键轨道理论(NBO)对两种单体间相互作用的本质进行了考查,并通过分子中原子理论(AIM)分析了复合物中氢键和卤键键鞍点处的电子密度拓扑性质.  相似文献   

7.
The second coordination sphere constitutes a distinguishing factor in the active site to modulate enzymatic reactivity. To unravel the origin of NO‐to‐N2O reduction activity of non‐heme diiron enzymes, herein we report a strong second‐coordination‐sphere interaction between a conserved Tyr197 and the key iron–nitrosyl intermediate of Tm FDP (flavo–diiron protein), which leads to decreased reaction barriers towards N–N formation and N–O cleavage in NO reduction. This finding supports the direct coupling of diiron dinitrosyl as the N–N formation mode in our QM/MM modeling, and reconciles the mechanistic controversy of external reduction between FDPs and synthetic biomimetics of the iron–nitrosyls. This work highlights the application of QM/MM 57Fe Mössbauer modeling in elucidating the structural features of not only first, but also second coordination spheres of the key transient species involved in NO/O2 activation by non‐heme diiron enzymes.  相似文献   

8.
The dioxygen reactivity of a series of TMPA‐based copper(I) complexes (TMPA=tris(2‐pyridylmethyl)amine), with and without secondary‐coordination‐sphere hydrogen‐bonding moieties, was studied at ?135 °C in 2‐methyltetrahydrofuran (MeTHF). Kinetic stabilization of the H‐bonded [( TMPA)CuII(O2.?)]+ cupric superoxide species was achieved, and they were characterized by resonance Raman (rR) spectroscopy. The structures and physical properties of [( TMPA)CuII(N3?)]+ azido analogues were compared, and the O2.? reactivity of ligand–CuI complexes when an H‐bonding moiety is replaced by a methyl group was contrasted. A drastic enhancement in the reactivity of the cupric superoxide towards phenolic substrates as well as oxidation of substrates possessing moderate C?H bond‐dissociation energies is observed, correlating with the number and strength of the H‐bonding groups.  相似文献   

9.
Nitrous oxide (N2O) contributes significantly to ozone layer depletion and is a potent greenhouse agent, motivating interest in the chemical details of biological N2O fixation by nitrous oxide reductase (N2OR) during bacterial denitrification. In this study, we report a combined experimental/computational study of a synthetic [4Cu:1S] cluster supported by N-donor ligands that can be considered the closest structural and functional mimic of the CuZ catalytic site in N2OR reported to date. Quantitative N2 measurements during synthetic N2O reduction were used to determine reaction stoichiometry, which in turn was used as the basis for density functional theory (DFT) modeling of hypothetical reaction intermediates. The mechanism for N2O reduction emerging from this computational modeling involves cooperative activation of N2O across a Cu/S cluster edge. Direct interaction of the μ4-S ligand with the N2O substrate during coordination and N–O bond cleavage represents an unconventional mechanistic paradigm to be considered for the chemistry of CuZ and related metal–sulfur clusters. Consistent with hypothetical participation of the μ4-S unit in two-electron reduction of N2O, Cu K-edge and S K-edge X-ray absorption spectroscopy (XAS) reveal a high degree of participation by the μ4-S in redox changes, with approximately 21% S 3p contribution to the redox-active molecular orbital in the highly covalent [4Cu:1S] core, compared to approximately 14% Cu 3d contribution per copper. The XAS data included in this study represent the first spectroscopic interrogation of multiple redox levels of a [4Cu:1S] cluster and show high fidelity to the biological CuZ site.

Experimental data and computational modeling indicates an active role for the bridging sulfide ligand in a synthetic CuZ model.  相似文献   

10.
Examined in this study is the kinetics of a net 2e transfer between [Fe2(μ‐O)(phen)4(H2O)2]4+ ( 1 ) and its hydrolytic derivatives [Fe2(μ‐O)(phen)4(H2O)(OH)]3+ ( 2 ) and [Fe2(μ‐O)(phen)4(OH)2]2+ ( 3 ) with in aqueous media and in presence of excess 1,10‐phenanthroline (phen). The reaction is quantitative with a 1 : 1 stoichiometry between the oxidant and reductant to produce ferroin ([Fe(phen)3]2+) and . The order of reactivity of the oxidant species is 1 > 2 > 3 , in agreement with the progressive cationic charge reduction. The reactions appear to be inner‐sphere where the initial one‐electron proton‐coupled redox (1e, 1H+; electroprotic) seems to be rate‐determining.  相似文献   

11.
As an important class of heterocyclic compounds, 1,3,4‐thiadiazoles have a broad range of potential applications in medicine, agriculture and materials chemistry, and were found to be excellent precursors for the crystal engineering of organometallic materials. The coordinating behaviour of allyl derivatives of 1,3,4‐thiadiazoles with respect to transition metal ions has been little studied. Five new crystalline copper(I) π‐complexes have been obtained by means of an alternating current electrochemical technique and have been characterized by single‐crystal X‐ray diffraction and IR spectroscopy. The compounds are bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[nitratocopper(I)], [Cu2(NO3)2(C6H9N3S)2], (1), bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[(tetrafluoroborato)copper(I)], [Cu2(BF4)2(C6H9N3S)2], (2), μ‐aqua‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}bis[nitratocopper(I)], [Cu2(NO3)2(C5H7N3S2)2(H2O)], (3), μ‐aqua‐(hexafluorosilicato)bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I)–acetonitrile–water (2/1/4), [Cu2(SiF6)(C5H7N3S2)2(H2O)]·0.5CH3CN·2H2O, (4), and μ‐benzenesulfonato‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I) benzenesulfonate–methanol–water (1/1/1), [Cu2(C6H5O3S)(C5H7N3S2)2](C6H5O3S)·CH3OH·H2O, (5). The structure of the ligand 5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine (Mepeta ), C6H9N3S, was also structurally characterized. Both Mepeta and 5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine (Pesta ) (denoted L ) reveal a strong tendency to form dimeric {Cu2L 2}2+ fragments, being attached to the metal atom in a chelating–bridging mode via two thiadiazole N atoms and an allylic C=C bond. Flexibility of the {Cu2(Pesta )2}2+ unit allows the CuI atom site to be split into two positions with different metal‐coordination environments, thus enabling the competitive participation of different molecules in bonding to the metal centre. The Pesta ligand in (4) allows the CuI atom to vary between water O‐atom and hexafluorosilicate F‐atom coordination, resulting in the rare case of a direct CuI…FSiF52− interaction. Extensive three‐dimensional hydrogen‐bonding patterns are formed in the reported crystal structures. Complex (5) should be considered as the first known example of a CuI(C6H5SO3) coordination compound. To determine the hydrogen‐bond interactions in the structures of (1) and (2), a Hirshfeld surface analysis has been performed.  相似文献   

12.
The assembly of CuII with the multifunctional ligand 2‐amino‐4‐sulfobenzoic acid (H2asba) in the presence of the auxiliary flexible ligands 1,4‐bis(triazol‐1‐ylmethyl)benzene (bbtz) and 1,4‐bis(imidazol‐1‐ylmethyl)benzene (bix) under ambient conditions resulted in two new supramolecular coordination polymers, namely poly[[(3‐amino‐4‐carboxybenzenesulfonato‐κO )aquabis[μ2‐1,4‐bis(triazol‐1‐ylmethyl)benzene‐κ2N 4:N 4′]copper(II)] 3‐amino‐4‐carboxybenzenesulfonate tetrahydrate], {[Cu(C7H6NO5S)(C12H12N6)2(H2O)](C7H6NO5S)·4H2O}n , ( 1 ), and poly[[bis(μ2‐2‐amino‐4‐sulfonatobenzoato‐κ3O 1:N ,O 1′)tetraaqua[μ2‐1,4‐bis(triazol‐1‐ylmethyl)benzene‐κ2N 4:N 4′]dicopper(II)] tetrahydrate], {[Cu2(C7H5NO5S)2(C14H14N4)(H2O)4]·4H2O}n , ( 2 ). Single‐crystal X‐ray structure diffraction analysis of ( 1 ) reveals that the bbtz ligand acts as a bridge, linking adjacent CuII ions into a two‐dimensional cationic (4,4) topological network, in which the coordinated 3‐amino‐4‐carboxybenzenesulfonate (Hasba) anion uses its sulfonate group to bind with the CuII ion in a monodentate fashion and the carboxylate group remains protonated. The lattice Hasba anion resides in the two‐dimensional layer and balances the charge. The carboxylate group of the 2‐amino‐4‐sulfonatobenzoate (asba2−) ligand in ( 2 ) is involved in bidentate coordination, connecting adjacent CuII ions into carboxylate‐bridged chains which are further bridged by the auxiliary flexible bix ligand in a trans gauche (TG) mode, resulting in the formation of a two‐dimensional network architecture. The amino group of the asba2− ligand in ( 2 ) also takes part in the coordination with the central CuII ion. The six‐coordinated CuII centres in ( 1 ) and ( 2 ) exhibit distorted octahedral coordination geometries. Extensive hydrogen bonding exists in both ( 1 ) and ( 2 ). The interlayer hydrogen bonds in both compounds further extend adjacent two‐dimensional layers into three‐dimensional supramolecular network architectures. Furthermore, a detailed analysis of the solid‐state UV–Vis–NIR (NIR is near IR) diffuse reflectance data indicates that ( 1 ) and ( 2 ) may have potential as wide band gap indirect semiconductor materials. Compounds ( 1 ) and ( 2 ) show reversible and irreversible dehydration–rehydration behaviours, respectively.  相似文献   

13.
Four new complexes of [Cu(bpm)(ox)(H2O)] ( 1 ), [Cu(tpd)(dca)(H2O)] ( 2 ), [Cu(bppz)(N3)2] ( 3 ), and [Cu(bpm)21,3‐N3)(N3)] ( 4 ) (bpm = 2,2′‐bipyrimidine, bppz = 2,3‐bis(2‐pyridyl)pyrazine, tpd = 4‐terpyridone, dca = dicyanamide, ox = oxalate) have been prepared and characterized by X‐ray single‐crystal analysis and variable‐temperature magnetic measurements. Compounds 1–4 are essentially mononuclear Cu(II) complexes. However, in complex 1 , Cu(II) it was found that intermolecular hydrogen bonding through between H2O and ox formed 1‐D chain structure. In complex 2 it was found that the hydrogen bonding between H2O and tpd of the next molecule led to for a binuclear Cu(II) complex. In complex 3 , two nitrogen atoms, one of the pyridyl group of bppz and one of N3? ligands, are weakly coordinated to neighbor Cu(II) ion thus leading to formation of a 1‐D chain structure. In complex 4 , one nitrogen atom of terminated N3? is weakly coordinated to the neighbor Cu(II) site to form a 1‐D polymeric structure. The magnetic susceptibility measurements indicate that complex 1 and 4 exhibit a weak antiferromagnetic interaction whereas a ferromagnetic coupling has been established for complexes 2 and 3 .  相似文献   

14.
In the first title salt, [Cu(C12H8N2)2(C5H10N2Se)](ClO4)2, the CuII centre occupies a distorted trigonal–bipyramidal environment defined by four N donors from two 1,10‐phenanthroline (phen) ligands and by the Se donor of a 1,3‐dimethylimidazolidine‐2‐selone ligand, with the equatorial plane defined by the Se and by two N donors from different phen ligands and the axial sites occupied by the two remaining N donors, one from each phen ligand. The Cu—N distances span the range 1.980 (10)–2.114 (11) Å and the Cu—Se distance is 2.491 (3) Å. Intermolecular π–π contacts between imidazolidine rings and the central rings of phen ligands generate chains of cations. In the second salt, [Cu(C10H8N2)2(C3H6N2S)](ClO4)2, the CuII centre occupies a similar distorted trigonal–bipyramidal environment comprising four N donors from two 2,2′‐bipyridyl (bipy) ligands and an S donor from an imidazolidine‐2‐thione ligand. The equatorial plane is defined by the S donor and two N donors from different bipy ligands. The Cu—N distances span the range 1.984 (6)–2.069 (7) Å and the Cu—S distance is 2.366 (3) Å. Intermolecular π–π contacts between imidazolidine and pyridyl rings form chains of cations. A major difference between the two structures is due to the presence in the second complex of two N—H...O hydrogen bonds linking the imidazolidine N—H hydrogen‐bond donors to perchlorate O‐atom acceptors.  相似文献   

15.
The 1:1 proton‐transfer compound of the potent substituted amphetamine hallucinogen (R)‐2‐amino‐1‐(8‐bromobenzo[1,2‐b;5,4‐b′]difuran‐4‐yl)propane (common trivial name `bromodragonfly') with 3,5‐dinitrosalicylic acid, namely 1‐(8‐bromobenzo[1,2‐b;5,4‐b′]difuran‐4‐yl)propan‐2‐aminium 2‐carboxy‐4,6‐dinitrophenolate, C13H13BrNO2+·C7H3N2O7, forms hydrogen‐bonded cation–anion chain substructures comprising undulating head‐to‐tail anion chains formed through C(8) carboxyl–nitro O—H...O associations and incorporating the aminium groups of the cations. The intrachain cation–anion hydrogen‐bonding associations feature proximal cyclic R33(8) interactions involving both an N+—H...Ophenolate and the carboxyl–nitro O—H...O associations and aromatic π–π ring interactions [minimum ring centroid separation = 3.566 (2) Å]. A lateral hydrogen‐bonding interaction between the third aminium H atom and a carboxyl O‐atom acceptor links the chain substructures, giving a two‐dimensional sheet structure. This determination represents the first of any form of this compound and is in the (R) absolute configuration. The atypical crystal stability is attributed both to the hydrogen‐bonded chain substructures provided by the anions, which accommodate the aminium proton‐donor groups of the cations and give crosslinking, and to the presence of the cation–anion aromatic ring π–π interactions.  相似文献   

16.
Multifunctional 2‐amino‐5‐sulfobenzoic acid (H2afsb) can exhibit a variety of roles during the construction of supramolecular coordination polymers. The pendant carboxylic acid, sulfonic acid and amino groups could not only play a role in directing bonding but could also have the potential to act as hydrogen‐bond donors and acceptors, resulting in extended high‐dimensional supramolecular networks. Two new CuII coordination compounds, namely catena‐poly[[[diaquacopper(II)]‐μ‐1,6‐bis(1H‐1,2,4‐triazol‐1‐yl)hexane‐κ2N4:N4′] bis(3‐amino‐4‐carboxybenzenesulfonate) dihydrate], {[Cu(C10H16N6)2(H2O)2](C7H6NO5S)2·2H2O}n or {[Cu(bth)2(H2O)2](Hafsb)2·2H2O}n, (1), and bis(μ‐2‐amino‐5‐sulfonatobenzoato‐κ2O1:O1′)bis{μ‐1,2‐bis[(1H‐imidazol‐1‐yl)methyl]benzene‐κ2N3:N3′}bis[aquacopper(II)] trihydrate, [Cu2(C7H5NO5S)2(C14H14N4)2(H2O)2]·3H2O or [Cu2(afsb)2(obix)2(H2O)2]·3H2O, (2), have been obtained through the assembly between H2afsb and the CuII ion in the presence of the flexible N‐donor ligands 1,6‐bis(1H‐1,2,4‐triazol‐1‐yl)hexane (bth) and 1,2‐bis[(1H‐1,2,4‐triazol‐1‐yl)methyl]benzene (obix), respectively. Compound (1) consists of a cationic coordination polymeric chain and 3‐amino‐4‐carboxybenzenesulfonate (Hafsb) anions. Compound (2) exhibits an asymmetric dinuclear structure. There are hydrogen‐bonded networks within the lattices of (1) and (2). Interestingly, both (1) and (2) exhibit reversible dehydration–rehydration behaviour.  相似文献   

17.
Two novel copper(I) complexes with Cu‐O bonds, [Cu2L2(PPh3)2](BF4)2 ( 1 ) and [Cu(L)(dppeo)](BF4) ( 2 ) ( L = 6‐(4‐diethylmethylphosphonatephenyl)‐2,2′‐bipyridine, dppeo = bis(diphenylphosphino)ethane monoxide), have been prepared and their structures characterized. In the binuclear complex 1 , the ligand L serves as tridentate donor with the N, N′ and O as coordination atoms, and the two CuI atoms are bridged through both P = O donor atoms in different ligand L with a triphenylphosphine molecule as auxiliary ligand. While in mononuclear complex 2 , both ligands L and dppeo behave as bidentate with NN from L and PO from dppeo chelating to CuI atom.  相似文献   

18.
To get information about the reactivity profile of the donor‐stabilized guanidinatosilicon(II) complexes 2 and 3 , a series of oxidative addition reactions was studied. Treatment of 2 and 3 with S8, Se, or Te afforded the respective four‐coordinate silicon(IV ) complexes 8 – 10 and 12 – 14 , which contain an SiN3El skeleton (El=S, Se, Te) with an Si?El double bond. Treatment of 2 with N2O yielded the dinuclear four‐coordinate silicon(IV) complex 11 with an SiN3O skeleton and a central four‐membered Si2O2 ring. Compounds 8 – 14 exist both in the solid state and in solution. They were characterized by elemental analyses, NMR spectroscopic studies in the solid state and in solution, and crystal structure analyses. The reactivity profile of 2 was compared with that of the structurally related bis[N,N′‐diisopropylbenzamidinato(?)]silicon(II) ( 1 ), which is three‐coordinate in the solid state and four‐coordinate in solution ( 1′ ). In contrast, as shown by state‐of‐the‐art relativistic DFT analyses and experimental studies, silylene 2 is three‐coordinate both in the solid state and solution. The three‐coordinate species 2 is 9.3 kcal mol?1 more stable in benzene than the four‐coordinate isomer 2′ . The reason for this was studied by bonding analyses of 2 and 2′ , which were compared with those of 1 and 1′ . The gas‐phase proton affinities of the relevant species in solution ( 1 ′ and 2 ) amount to 288.8 and 273.8 kcal mol?1, respectively.  相似文献   

19.
The three title compounds, namely 4‐phenyl‐1H‐imidazolium hexa‐μ2‐chloro‐chloro‐μ4‐oxo‐tris­(4‐phenyl‐1H‐imidazole‐κN1)­tetra­copper(II) monohydrate, (C9H9N2)[Cu4Cl7O(C9H8N2)3]·H2O, hexa‐μ2‐chloro‐μ4‐oxo‐tetra­kis­(pyridine N‐oxide‐κO)tetra­copper(II), [Cu4Cl6O(C5H5NO)4], and hexa‐μ2‐chloro‐tetra­kis(2‐methyl‐1H‐imidazole‐κN1)‐μ4‐oxo‐tetra­copper(II) methanol trisolvate, [Cu4Cl6O(C4H6N2)4]·3CH4O, exhibit the same Cu4OCl6 framework, where the O atom at the centre of an almost regular tetra­hedron bridges four copper cations at the corners. This group is in turn surrounded by a Cl6 octa­hedron, leading to a rather globular species. This special arrangement of the CuII cations results in a diversity of magnetic behaviours.  相似文献   

20.
Two new binuclear cobalt(II) complexes, [Co2 L1 (μ2‐DPP)]2+ ( 1 ) (H L1 = N, N, N′, N′‐ tetrakis (2‐benzimidazolylmethyl)‐2‐hydroxyl ‐1,3‐diaminopropane; DPP = diphenylphosphinate) and [Co2 L2 (μ2‐BNPP)2]+ ( 2 ) (H L2 = 2,6‐bis‐[N,N‐di(2‐ pyridylmethyl)aminomethyl]‐4‐methylphenol, BNPP = bis(4‐nitrophenyl)phosphate) have been synthesized and their crystal structures and magnetic properties are shown. In 1 , each CoII atom has a distorted trigonal bipyramidal coordination sphere with a N3O2 donor set and the central two CoII atoms are bridged by one alkoxo‐O atom and one μ2‐DPP ion with the Co1‐Co2 separation of 3.542Å. In 2 , each CoII atom has a pseudo octahedral environment with a N3O3 donor set and the central two CoII atoms are bridged by a phenolic oxygen atom of L2 and two μ2‐BNPP ions with the Co1‐Co2 separation of 3.667Å. Susceptibility data of 1 and 2 indicate intramolecular antiferromagnetic coupling of the high‐spin CoII atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号