首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The room temperature structures of the five layer Aurivillius phases A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb) have been refined from powder neutron diffraction data using the Rietveld method. The structures consist of [Bi2O2]2+ layers interleaved with perovskite-like [A2Bi2Ti5O16]2− blocks. The structures were refined in the orthorhombic space group B2eb (SG. No. 41), Z=4, and the unit cell parameters of the oxides are a=5.4251(2), b=5.4034(1), c=48.486(1); a=5.4650(2), b=5.4625(3), c=48.852(1); a=5.4988(3), b=5.4980(4), c=50.352(1); a=5.4701(2), b=5.4577(2), c=49.643(1) for A=Ca, Sr, Ba and Pb, respectively. The structural features of the compounds were found similar to n=2-4 layers bismuth oxides. The strain caused by mismatch of cell parameter requirements for the [Bi2O2]2+ layers and perovskite-like [A2Bi2Ti5O16]2− blocks were relieved by tilting of the TiO6 octahedra. Variable temperature synchrotron X-ray studies for Ca and Pb compounds showed that the orthorhombic structure persisted up to 675 and 475 K, respectively. Raman spectra of the compounds are also presented.  相似文献   

2.
A new series of layered perovskite photocatalysts, ABi2Ta2O9 (A=Ca, Sr, Ba), were synthesized by the conventional solid-state reaction method and the crystal structures were characterized by powder X-ray diffraction. The results showed that the structure of ABi2Ta2O9 (A=Ca, Sr) is orthorhombic, while that of BaBi2Ta2O9 is tetragonal. First-principles calculations of the electronic band structures and density of states (DOS) revealed that the conduction bands of these photocatalysts are mainly attributable to the Ta 5d+Bi 6p+O 2p orbitals, while their valence bands are composed of hybridization with O 2p+Ta 5d+Bi 6s orbitals. Photocatalytic activities for water splitting were investigated under UV light irradiation and indicated that these photocatalysts are highly active even without co-catalysts. The formation rate of H2 evolution from an aqueous methanol solution is about 2.26 mmol h-1 for the photocatalyst SrBi2Ta2O9, which is much higher than that of CaBi2Ta2O9 and BaBi2Ta2O9. The photocatalytic properties are discussed in close connection with the crystal structure and the electronic structure in details.  相似文献   

3.
Microcrystalline ABi2Nb2O9 (A=Sr, Ba) photocatalysts were successfully synthesized by a citrate complex method. The as-prepared samples were characterized by the X-ray diffraction technique, BET surface area analysis, UV-vis diffuse reflectance spectrum, transmission electron microscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-atomic emission spectrometry. The results indicated that single-phase orthorhombic SrBi2Nb2O9 could be obtained after being calcined above 650 °C, while BaBi2Nb2O9 was tetragonal. Based on the diffuse reflectance spectra, the band gaps of the obtained samples were calculated to be around 3.34-3.54 eV. For the photocatalytic redox reaction of methyl orange under UV-light irradiation, SrBi2Nb2O9 exhibited higher photocatalytic activity than that of BaBi2Nb2O9. The effects of the crystallinities, BET surface areas and crystal structures of the samples on the photocatalytic activities were discussed in detail.  相似文献   

4.
We report here a novel method to prepare high-quality samples of the three layered oxides ASrBi2Nb2TiO12ACa, Sr or Ba using the pre-formed intermediates ABi2Nb2O9 and SrTiO3. The room temperature structures were refined using synchrotron X-ray and Neutron powder diffraction data in the orthorhombic space group B2cb. This symmetry arises as a consequence of cooperative tilting of the BO6 octahedra in the [ASrNb2TiO10]2− perovskite-like slabs and a polar displacement of the cations. The structure is characterized by extensive cation disorder but lacks appreciable oxygen vacancies.  相似文献   

5.
New oxysilicates with the general formula ALa3Bi(SiO4)3O and ALa2Bi2(SiO4)3O [ACa, Sr and Ba] are synthesized and characterized. Powder X-ray diffraction of these silicates show that they are isostructural with BiCa4(VO4)3O which has an apatite-related structure. Eu3+ luminescence in the newly synthesized oxysilicates show broad emission lines due to disorder of cations. The relatively high intense magnetic dipole transition 5D07F1 points to a more symmetric environment. The photoluminescence results confirm that the compounds have apatite-related crystal structure.  相似文献   

6.
The single crystal structure of a series of nine isotypic Mo(V) diphosphates was determined from crystals with composition A2+(MoO)10(P2O7)8 (A=Ba, Sr, Ca, Cd, Pb) and A+(MoO)5(P2O7)4 (A=Ag, Li, Na, K). The structure of those phosphates, built up of corner sharing MoO6 octahedra, MoO5 tetragonal pyramids and P2O7 diphosphates groups, forms eight-sided tunnels as described by Lii et al. for A=Ag. New features are evidenced: (1) existence of two orientations, up and down along b for the MoO5 pyramids; (2) maximum insertion rate of the divalent cations which is twice less than that of the univalent cations; (3) different behavior of the series “Pb, Sr, Ba, Li, Na, K” which exhibits only one kind of site for the inserted cation, compared to the “Cd, Ca, Ag” series for which two kinds of sites are observed; (4) off-centering of the A-site cations with respect to the tunnel axis; and (5) unusually high thermal factors along the tunnel axis, but absence of ionic conductivity.  相似文献   

7.
The structures of five perovskite-related oxides with the general composition ACu3Ru4O12 with A=Na, Ca, Sr, La and Nd, have been examined both by XRD-Rietveld refinements and Ru-K EXAFS-spectroscopy. In addition, the behavior on reduction was investigated by thermogravimetry (TG). The TG measurements revealed that the composition was almost exactly A1Cu3Ru4O12 for all samples. The inter-atomic distances derived from EXAFS- and XRD-Rietveld fits show an excellent agreement with differences smaller than 8 mÅ even for R>5 Å. All inter-atomic distances increase in the order Na<Ca<Sr<Nd<La and were found to depend linearly on the product of charge and ionic radius of the A-cation. The experimentally found distances are compared with the corresponding values expected from bond-valence calculations.  相似文献   

8.
The compounds LnSrScO4, where Ln=La, Ce, Pr, Nd and Sm, have been synthesized. Rietveld profile analysis of powder X-ray diffraction data collected at room temperature reveal that the compounds possess a modified K2NiF4-type structure with orthorhombic cell symmetry formed by tilting of the ScO6 octahedra. Variable temperature (25-1200 °C) powder X-ray diffraction data show that at the highest temperatures the structures of LaSrScO4 and PrSrScO4 transform to the regular tetragonal K2NiF4-structure type but the degree of orthorhombicity (c/a) in the unit cells initially increases on heating for all materials, reaching a maximum near 300 °C. This structural behavior is analyzed in terms of relative ionic radii of the various lanthanides and scandium. A general structural model based on tolerance factors has been developed for the family of materials A2BO4 with various A and B cation sizes.  相似文献   

9.
The room temperature structures as well as the temperature-dependent conductivity and dielectric properties of the A3CoNb2O9 (A=Ca2+, Sr2+ and Ba2+) triple perovskites have been carefully investigated. A constrained modulation wave approach to Rietveld structure refinement is used to determine their room temperature crystal structures. Correlations between these crystal structures and their physical properties are found. All three compounds undergo insulator to semiconductor phase transitions as a function of increasing temperature. The hexagonal Ba3CoNb2O9 compound acts as an insulator at room temperature, while the monoclinic Ca3CoNb2O9 compound is already a semiconductor at room temperature. The measured dielectric frequency characteristics of the A=Ba compound are excellent.  相似文献   

10.
The crystal structure of potassium, rubidium and caesium fluoroberyllates have been re-examined by neutron powder diffraction at room temperature and at 1.5 K. Previously, their structures, obtained from X-ray data, were described in the Pn21a space group. However, the results obtained from Rietveld refinements, using powder neutron diffraction, at both temperatures, indicated that all structures are orthorhombic with space group Pnma. The known phase transition at high temperature is probably related to the appearance of a hexagonal pseudo-symmetry instead of the elimination of the mirror plane between the above mentioned orthorhombic space groups. A possible phase transition, at very low temperature, was discarded considering the stereochemical criteria concerning the structural stability of A2BX4 compounds. This was confirmed by thermal analysis. On the other hand, a modulated background has been detected in all samples during the refinements. This is compatible with the presence of an amorphous phase, coexisting with the crystalline phase, or with a disordered component within the main crystalline phase. Instead of using a polynomial function, the background was modelled by Fourier filtering improving the fit for all patterns. The radial distribution function (RDF) was obtained from the analysis of the calculated background and compared with the RDF from the average crystal structure. The advantages of neutron with respect to X-ray diffraction were evidenced for this type of compound with β-K2SO4-type structure.  相似文献   

11.
The compounds BiMO2NO3, with M=Pb, Ca, Sr, and Ba, were obtained as single-phase products from solid-state reactions in an atmosphere of nitrous gases. The oxide nitrates with Pb and Ca crystallize in the tetragonal space group I4/mmm with two formula units per unit cell; the oxide nitrates with Sr and Ba crystallize in the orthorhombic space group Cmmm with four formula units per unit cell. Lattice parameters at room temperature are a=397.199(4), c=1482.57(2) pm for M=Pb; a=396.337(5), c=1412.83(3) pm for M=Ca; a=1448.76(3), b=567.62(1), c=582.40(1) pm for M=Sr and a=1536.50(8), b=571.67(3), c=597.55(3) pm for M=Ba. The structures, which were refined by powder X-ray diffraction, consist of alternating [BiMO2]+ and [NO3] layers stacked along the direction of the long axis. IR and thermogravimetric data are also given. The various M2+ cations in BiMO2NO3 are compatible with each other; therefore and because of their layer-type structure, these compounds are interesting precursors for oxide materials, e.g., the HTSC compounds (Bi,Pb)2Sr2Can−1CunOx.  相似文献   

12.
In this paper we describe compounds A3BC10O20 (A = Sr, Ba, Pb; B = Ti, Ge, Sn; and C = Al, Ga). The crystal structure of Ba3TiAl10O20 has been determined by neutron powder profile refinement. The luminescence of these compounds has been investigated. Apart from the titanate luminescence of Ba3TiAl10O20, these compounds show a semiconductor type of luminescence.  相似文献   

13.
Three-layer Aurivillius ceramics Bi2SrCaNb2TiO12, Bi2Sr1.5Ca0.5Nb2TiO12, Bi2Sr2Nb2TiO12, Bi2Sr1.5Ba0.5Nb2TiO12, and Bi2SrBaNb2TiO12 were formed via solid-state synthesis and their structures characterized by combined Rietveld analysis of powder X-ray and neutron diffraction data. Static disorder was observed in the form of mixed cation occupancies between the Bi and the Sr, Ca, or Ba on the A sites in the perovskite block, as well as between the Nb and Ti sites. The degree of site mixing between the Bi site in the (Bi2O2)2+ layer and the perovskite-block A site increased with increasing average A site cation radius (ACR). Bi2SrBaNb2TiO12 displayed the greatest degree of Bi-A site static disorder. Bond valence sum (BVS) calculations showed an increase in A site BVS with average A site cation radius. All compositions except Bi2SrCaNb2TiO12 had overbonded A sites and the A site BVS increased nearly linearly with lattice parameter and ACR. A preference was observed for Ca2+ to remain on the A site while Ba2+ preferred to disorder to the Bi site, indicating that the cation site mixing occurs to reduce strain between the (Bi2O2)2+ layer and the perovskite block in the structure. Unusually large Ti site BVS and thermal parameter for the equatorial oxygen in the TiO6 octahedra were observed in structural models that included full oxygen occupancy. However, excellent structure models and more reasonable BVS values were obtained by assuming oxygen vacancies in the TiO6 octahedra. AC impedance spectroscopy performed on all samples indicate that the total electrical conductivity is on the order of at 900°C.  相似文献   

14.
Using various synthetic approaches, we have prepared over 50 new multinary bismuth oxyhalides which crystallize in four layered structure types. Most of the compounds belong to the three previously reported structure types involving fluorite- and CsCl-like metal-oxygen vs. metal-halogen layers as well as single or double halide ion sheets. The majority of Bi2−xAxQ0.6O2Z2 (A=Li, Na, K, Ca, Sr, Ba, Pb; Q=Rb, Cs; Z=Cl, Br, I) compounds crystallize in the tetragonal structure of Pb0.6Bi1.4Cs0.6O2Cl2 (Y2) while both Bi1.4Ba0.6Q0.6O2I2 (Q=Rb, Cs) oxyiodides adopt its orthorhombically distorted, partially ordered version. Due to the lower degree of substitution, the fluorite-like layers in the Y2 structure accommodate more A cations than previously known for related Bi compounds. However, very large Tl+ or Rb+ give compounds with another, as yet unknown, structure. We discuss the influence of size and charge of A cations and stoichiometry of [Bi2−xAxO2] fluorite layers on structure and stability of layered oxyhalides of bismuth. Also, we predict formation of isostructural compounds with smaller Q cations like Tl+ and K+.  相似文献   

15.
The crystal structures of Bi2.5Na0.5Ta2O9 and Bi2.5Nam-1.5NbmO3m+3 (m=3,4) have been investigated by the Rietveld analysis of their neutron powder diffraction patterns (λ=1.470 Å). These compounds belong to the Aurivillius phase family and are built up by (Bi2O2)2+ fluorite layers and (Am-1BmO3m+1)2- (m=2-4) pseudo-perovskite slabs. Bi2.5Na0.5Ta2O9 (m=2) and Bi2.5Na2.5Nb4O15 (m=4) crystallize in the orthorhombic space group A21am, Z=4, with lattice constants of a=5.4763(4), b=5.4478(4), c=24.9710 (15) and a=5.5095(5), b=5.4783(5), c=40.553(3) Å, respectively. Bi2.5Na1.5Nb3O12 (m=3) has been refined in the orthorhombic space group B2cb, Z=4, with the unit-cell parameters a=5.5024(7), b=5.4622(7), and c=32.735(4) Å. In comparison with its isostructural Nb analogue, the structure of Bi2.5Na0.5Ta2O9 is less distorted and bond valence sum calculations indicate that the Ta-O bonds are somewhat stronger than the Nb-O bonds. The cell parameters a and b increase with increasing m for the compounds Bi2.5Nam-1.5NbmO3m+3 (m=2-4), causing a greater strain in the structure. Electron microscopy studies verify that the intergrowth of mixed perovskite layers, caused by stacking faults, also increases with increasing m.  相似文献   

16.
Bi5AgNb4O18 is a new phase, which was discovered during the phase equilibrium study of the Bi2O3-Ag2O-Nb2O5 system. Bi5AgNb4O18 was prepared at 750°C and is stable in air up to its melting temperature of 1160.1±5.0°C (standard error of estimate). Results of a Rietveld refinement using neutron powder diffraction confirmed that Bi5AgNb4O18 is isostructural with Bi3TiNbO9, Bi5NaNb4O18, and Bi5KNb4O18. The structure was refined in the orthorhombic space group A21am, Z=2, and the lattice parameters are a=5.4915(2) Å, b=5.4752(2) Å, c=24.9282(8) Å, and V=749.52(4) Å3. The structure can be described as the m=2 member of the Aurivillius family, (Bi2O2)2+ (Am−1BmO3m+1)2− (where A=Bi and B=Ag, Nb), which is characterized by perovskite-like (Am−1BmO3m+1)2− slabs regularly interleaved with (Bi2O2)2+ layers. The octahedral [NbO6] units are distorted with Nb-O distances ranging from 1.856(4) to 2.161(2) Å and the O-Nb-O angles ranging from 82.6(3)° to 98.5(3)°. These octahedra are tilted about the a- and c-axis by about 10.3° and 12.4°, respectively. Ag was found to substitute exclusively into the Bi-site that is located in the layer between the two distorted [NbO6] units. Although the Ag substitutes into the Bi-site with the Bi:Ag ratio of 1:1, the existence of a superlattice was not detected using electron diffraction. A comparison of (Bi2O2)2+(Am−1NbmO3m+1)2− structures (where A=Ag, Na, and K) revealed a relation between the pervoskite tolerance factor, t, and structural distortion. The reference pattern for Bi5AgNb4O18 has been submitted to the International Centre for Diffraction Data (ICDD) for inclusion in the Powder Diffraction File.  相似文献   

17.
A series of new phases, A2BaCuO5 (A = Y, Sm, Eu, Gd, Dy, Ho, Er, Yb), has been isolated. These compounds are orthorhombic, with a ? 7.1, b ? 12.2, and c ? 5.6Å. The probable space groups deduced from the electron diffraction patterns are Pbnm and Pbn21. The structure has been resolved from X-ray powder patterns. The framework can be considered as built up from distorted monocapped trigonal prisms AO7 which share one triangular face forming A2O11 blocks. The edge-sharing A2O11 blocks form a three-dimensional network which delimits cavities where Ba2+ and Cu2+ are located. Barium is coordinated to 11 oxygen atoms, while the coordination polyhedron of copper is a distorted tetragonal pyramid CuO5.  相似文献   

18.
Rietveld refinement of powder neutron diffraction data has been used to study the crystal structures of the four-layer Aurivillius-phase ferroelectrics Bi5Ti3FeO15 (at 25°C) and SrBi4Ti4O15 (at a series of temperatures up to 800°C). At 25°C both materials adopt the polar orthorhombic space group A21am, in common with two-layer analogues such as SrBi2Ta2O9. At temperatures well above the ferroelectric Curie temperature (i.e., at temperatures of 650°C and above, with Tc∼550°C) SrBi4Ti4O15 transforms to the centrosymmetric tetragonal space group I4/mmm. However, there is good evidence from the raw diffraction data of a very subtle intermediate paraelectric orthorhombic phase, of Amam symmetry, in the region 550>650°C. The distortion in the ferroelectric phase can be traced to displacements of the cations in the A site of the perovskite block, with cooperative tilting of the BO6 octahedra. The nature of the octahedral tilt system, cation disorder at the perovskite A and B sites, and the phase transition sequence in SrBi4Ti4O15, which parallels that found in SrBi2Ta2O9, are discussed.  相似文献   

19.
The room temperature structures of the four-layer Aurivillius phase ferroelectrics CaBi4Ti4O15 and BaBi4Ti4O15 are determined by means of single crystal X-ray diffraction. Regarding the CaBi4Ti4O15 phase, in agreement with the tolerance factor, a significant deformation of the perovskite blocks is observed. The rotation system of the octahedra is typical from even layer Aurivillius phases and leads to the use of the space group A21am. For the BaBi4Ti4O15 phase, only a weak variation with respect to the F2mm space group can be suggested from single crystal X-ray diffraction. A significant presence of Ba atoms in the [M2O2] slabs is confirmed in agreement with the previous works but specific Ba2+ and Bi3+ sites have to be considered due to the large difference in bounding requirement of these cations. Possible origins for the ferroelectric relaxor behavior of the Ba-based compound are discussed in view of the presented structural analyses.  相似文献   

20.
New cubic-AGaSnS4 (A=Na, K, Rb, Cs, Tl) and orthorhombic-NaGaSnS4 compounds were synthesized by solid-state reactions and characterized by X-ray diffraction and diffuse reflectance spectroscopy. Single crystals of orthorhombic-Na1.263Ga1.263Sn0.737S4 were obtained in the crystal growth attempts of sodium compound. All six new compounds have orthorhombic AgGaGeS4 and cubic BaGa2S4 structures, as determined from single crystal X-ray structures of Na1.263Ga1.263Sn0.737S4 and cubic-AGaSnS4 (A=Na, K, Rb). Orthorhombic-NaGaSnS4 and known layered-KGaSnS4 undergo structural transformation to thermodynamically stable cubic form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号