首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The family of hydroxymonophosphates of generic formula AMIII(PO3(OH))2 has been revisited using hydrothermal techniques. Four new phases have been synthesized: CsIn(PO3(OH))2, RbFe(PO3(OH))2, RbGa(PO3(OH))2 and RbAl(PO3(OH))2. Single crystal diffraction studies show that they exhibit two different structural types from previously observed other phases with A=H3O, NH4, Rb and M=Al, V, Fe. The “Cs-In” and “Rb-Fe” phosphates crystallize in the triclinic space group , with the cell parameters a=7.4146(3) Å, b=9.0915(3) Å, c=9.7849(3) Å, α=65.525(3)°, β=70.201(3)°, γ=69.556(3)° and V=547.77(4) Å3 (Z=3) for CsIn(PO3(OH))2 and a=7.2025(4) Å, b=8.8329(8) Å, c=9.4540(8) Å, α=65.149(8)°, β=70.045(6)°, γ=69.591(6)° and V=497.44(8) Å3 (Z=3) for α-RbFe(PO3(OH))2. The “Rb-Al” and “Rb-Ga” phosphates crystallize in the Rc space group, with a=8.0581(18) Å and c=51.081(12) Å (V=2872.5(11) Å3 and Z=18) for RbAl(PO3(OH))2 and a=8.1188(15) Å and c=51.943(4) Å (V=2965(8) Å and Z=18) for RbGa(PO3(OH))2. These two structural types are closely related. Both are built up from MIIIO6 octahedra sharing their apices with PO3(OH) tetrahedra to form [M3(PO3OH)6] units, but the latter exhibits a different configuration of their tetrahedra. The three-dimensional host-lattices result from the connection of the [M3(PO3OH)6] units and they present numerous intersecting tunnels containing the monovalent cations.  相似文献   

2.
Hydrothermal reactions of VOSO4·3H2O, CdAc2·2H2O, NiCl2·6H2O, H3PO4, and H2O yield the first example of trimetallic phosphate materials, [Ni(H2O)4]Cd(VO)(PO4)21. The single-crystal X-ray diffraction shows that its structure consists of Cd/V/O binary metal oxide lamellas decorated by PO4 tetrahedra, which are further pillared by NiO2(H2O)4 octahedra to generate a neutral 3-D framework containing two intercrossing 8-MR channels where the coordinated water molecules protrude into. Thermal and magnetic behaviors of this material were also measured. Crystal data: CdNiVP2O13H8, orthorhombic Ibca (No.73), a=7.1307(2) Å, b=18.6248(3) Å, c=14.8046(2) Å, V=1966.17(7) Å3, Z=8.  相似文献   

3.
This paper reports the syntheses and characterization of two phosphonate compounds Cd{(2-C5H4NO)CH(OH)PO3}(H2O)2 (1) and Zn{(4-C5H4NO)CH(OH)PO3} (2) based on hydroxy(2-pyridyl N-oxide)methylphosphonic and hydroxy(4-pyridyl N-oxide)methylphosphonic acids. Compound 1 has a chain structure in which dimers of edge-shared {CdO6} octahedra are linked by {CPO3} tetrahedra through corner-sharing. The pyridyl rings reside on the two sides of the inorganic chain. Compound 2 has a layer structure where the inorganic chains made up of corner-sharing {ZnO4} and {CPO3} tetrahedra are covalently connected by pyridyl N-oxide groups. Crystal data for 1: triclinic, space group , a=6.834(1) Å, b=7.539(1) Å, c=10.595(2) Å, α=84.628(3)°, β=74.975(4)°, γ=69.953(4)°. For 2: triclinic, space group , a=5.219(1) Å, b=8.808(2) Å, c=9.270(2) Å, α=105.618(5)°, β=95.179(4)°, γ=94.699(4)°.  相似文献   

4.
The NaCdVO4-Cd3V2O8 and CdO-V2O5 sections of the ternary system Na2O-CdO-V2O5 have been studied and the crystal structures of Cd3V2O8 and Cd18V8O38 compounds were determined from single-crystal X-ray diffraction data. Cd3V2O8 crystallizes with the maricite-type structure in space group Pnma, a=9.8133(10) Å, b=6.9882(10) Å, c=5.3251(10) Å and Z=4, whereas Cd18V8O38 crystallizes in space group P1 with a new-type structure, a=8.5761(14), b=8.607(3), c=12.896(2) Å, α=95.64(1), β=102.45(1), γ=108.42(1)° and Z=1. The Cd3V2O8 structure is made up of Cd1O4 infinite chains of edge-sharing Cd1O6 octahedra which are parallel to the b direction. The Cd1O4 chains are linked together by VO4 tetrahedra and strongly distorted Cd2O4 tetrahedra. The structure of Cd18V8O38 is based on an ordered three-dimensional framework of cadmium and vanadium polyhedra that share corners. The distorted CdO6 octahedra, CdO5 trigonal bipyramids and CdO5 square pyramids share corners, edges or faces.  相似文献   

5.
Bi6.4Pb0.6P2O15.2 is a polymorph of structures with the general stoichiometry Bi6+xM1−xP2O15+y. However, unlike previously published structures that consist of layers formed by edge sharing OBi4 tetrahedra bridged by PO4 and TO6 (T=transition metal) tetrahedra and octahedra the title compound's structure is more complex. It is monoclinic, C2, a=19.4698(4) Å, b=11.3692(3) Å, c=16.3809(5) Å, β=101.167(1)°, Z=10. Single-crystal X-ray diffraction data were refined by least squares on F2 converging to R1=0.0387, wR2=0.0836 for 7023 intensities. The crystal twins by mirror reflection across (001) as the twin plane and twin component 1 equals 0.74(1). Oxygen ions are in tetrahedral coordination to four metal ions and the O(BiPb)4 units share corners to form layers that are part of the three-dimensional framework. Eight oxygen ions form a cube around the two crystallographically independent Pb ions. Pb-O bond lengths vary from 2.265(14) to 2.869(14) Å. Pairs of such cubes share an edge to form a Pb3O20 unit. The two oxygen ions from the unshared edges are part of irregular Bi polyhedra. Other oxygen ions of Bi polyhedra are part only of O(BiPb)4 units, and some oxygen ions of the polyhedra are also part of PO4 tetrahedra. One, two, three and or four PO4 moieties are connected to the Bi polyhedra. Bi-O bond lengths ?3.1 Å vary from 2.090(12) to 3.07(3) Å. The articulations of Pb cubes, Bi polyhedra and PO4 tetrahedra link into the three-dimensional structure.  相似文献   

6.
The room-temperature crystal structure of a new Cu(II) oxyphosphate—α Cu0.50IITiO(PO4)—was determined from X-ray single crystals diffraction data, in the monoclinic system, space group P21/c. The refinement from 5561 independent reflections lead to the following parameters: a=7.5612(4)Å, b=7.0919(4)Å, c=7.4874(4)Å, β=122.25(1)°, Z=4, with the final R=0.0198, wR=0.0510. The structure of α Cu0.50IITiO(PO4) can be described as a TiOPO4 framework constituted by chains of tilted corner-sharing [TiO6] octahedra running parallel to the c-axis and cross linked by phosphate [PO4] tetrahedra, where one-half of octahedral cavities created are occupied by Cu atoms. Ti atoms are displaced from the center of octahedra units in alternating long (2.308 Å) and short (1.722 Å) Ti-O(1) bonds along chains. Such O(1) atoms not linked to P atoms justify the oxyphosphate formulation α Cu0.50TiO(PO4). The divalent cations Cu2+ occupy a Jahn-Teller distorted octahedron sharing two faces with two [TiO6] octahedra. EPR and optical measurements are in good agreement with structural data. The X-ray diffraction results are supported by Raman and infrared spectroscopy studies that confirmed the existence of the infinite chains -Ti-O-Ti-O-Ti-. α Cu0.50TiO(PO4) shows a Curie-Weiss paramagnetic behavior in the temperature range 4-80 K.  相似文献   

7.
A new layered inorganic-organic hybrid aluminum phosphate-oxalate [H3N(CH2)4NH3]2[Al4(C2O4)(H2PO4)2(PO4)4]·4[H2O](AlPO-CJ25) has been synthesized hydrothermally, by using 1,4-diaminobutane (DAB) as structure-directing agent. The structure has been solved by single-crystal X-ray diffraction analysis and further characterized by IR, 31P MAS NMR, TG-DTA as well as compositional analyses. Crystal data: the triclinic space group P-1, a=8.0484(7) Å, b=8.8608(8) Å, c=13.2224(11) Å, α=80.830(6)°, β=74.965(5)°, γ=78.782(6)°, Z=2, R1[I>2σ(I)]=0.0511 and wR2(all data)=0.1423. The alternation of AlO4 tetrahedra and PO4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO6 octahedra to form the layered structure with 4,6-net sheet. Interestingly, oxalate ions are bis-bidentately bonded by participating in the coordination of AlO6, and bridging the adjacent AlO6 octahedra. The layers are held with each other through strong H-bondings between the terminal oxygens. The organic ammonium cations and water molecules are located in the large cavities between the interlayer regions.  相似文献   

8.
Two new complex vanadyl(IV)phosphates Na2MVO(PO4)2 (M=Ca, Sr) were synthesized in evacuated quartz ampoules and investigated by means of X-ray diffraction, electron microscopy, DTA, ESR and magnetic susceptibility measurements. The crystal structure of Na2SrVO(PO4)2 was solved ab initio from X-ray powder diffraction data. Both compounds are isostructural: a=10.5233(3) Å, b=6.5578(2) Å, c=10.0536(3) Å and a=10.6476(3) Å, b=6.6224(2) Å, c=10.2537(3) Å for Ca and Sr, respectively; S.G. Pnma, Z=4. The compounds have a three-dimensional structure consisting of V4+O6 octahedra connected by PO4 tetrahedra via five of the six vertexes forming a framework with cross-like channels. The strontium and sodium atoms are located in the channels in an ordered manner. Electron diffraction as well as high-resolution electron microscopy confirmed the structure solution. The new vanadylphosphates are Curie-Weiss paramagnets in a wide temperature range down to 2 K with θ=12 and 5 K for Ca and Sr phases, respectively.  相似文献   

9.
A new sodium gallophosphate, NaGa2(OH)(PO4)2, has been obtained by hydrothermal synthesis under autogeneous pressure at 473 K. It crystallizes in the P21/n space group with the cell parameters a=8.9675(8) Å, b=8.9732(5) Å, c=9.2855(7) Å, β=114.812(6)°, V=678.2 Å3 (Z=4). In its original three-dimensional framework, monophosphate groups share their apices with [Ga4O16(OH)2] tetrameric units, which are built from two GaO5(OH) octahedra and two GaO4(OH) trigonal bipyramids. The sodium cations are located in tunnels running along a, whereas the tunnels running along b are empty.  相似文献   

10.
A new iron phosphate (NH4)4Fe3(OH)2F2[H3(PO4)4] has been synthesized hydrothermally at HF concentrations from 0.5 to 1.2 mL. Single-crystal X-ray diffraction analysis reveals its three-dimensional open-framework structure (monoclinic, space group P21/n (No. 14), a=6.2614(13) Å, b=9.844(2) Å, c=14.271(3) Å, β=92.11(1)°, V=879.0(3) Å3). This structure is built from isolated linear trimers of corner-sharing Fe(III) octahedra, which are linked by (PO4) groups to form ten-membered-ring channels along [1 0 0]. This isolated, linear trimer of corner-sharing Fe(III) octahedra, [(FeO4)3(OH)2F2], is new and adds to the diverse linkages of Fe polyhedra as secondary building units in iron phosphates. The trivalent iron at octahedral sites for the title compound has been confirmed by synchrotron Fe K-edge XANES spectra and magnetic measurements. Magnetic measurements also show that this compound exhibit a strong antiferromagnetic exchange below TN=17 K, consistent with superexchange interactions expected for the linear trimer of ferric octahedra with the Fe-F-Fe angle of 132.5°.  相似文献   

11.
A new layered indium phosphate [Co(en)3][In3(H2PO4)6(HPO4)3]·H2O (1) has been synthesized solvothermally by using a racemic mix of chiral metal complex Co(en)3Cl3 as a template. Its structure is determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, NMR and TG analyses. The inorganic layer is built up by alternation of In-centred octahedra (InO6) and P-centered tetrahedra (PO3(OH), PO2(OH)2, PO2(=O)(OH) and PO(=O)(OH)2) forming a 4.12-net. The metal complex cations locate in the interlayer region and interact with the host network through H-bonds. It is the first indium phosphate compound templated by a transition-metal complex and is isostructural with GaPO-CJ14. Crystal data: 1, monoclinic, space group P21/m (No. 11), a=9.1700(18) Å, b=22.6923(5) Å, c=9.9116(2) Å, β=107.87(3)°, Z=4, R1[I>2σ(I)]=0.0287 and wR2(all data)=0.0939.  相似文献   

12.
A new phosphate compound, Mg2KNa(PO4)2·14H2O, formed in the laboratory by cyanobacteria, has been identified and its crystal structure studied with single-crystal X-ray diffraction and infrared spectroscopy. The crystal is orthorhombic with the space group Pnma and unit-cell parameters a=25.1754(18) Å, b=6.9316(5) Å, c=11.2189(10) Å, V=1957.8(3) Å3. Its structure can be viewed as stacking of three types of layers along the a-axis in a sequence ABCBABCB…, where layer A is composed of Mg1(H2O)6 octahedra and Na(H2O)6 trigonal prisms, layer B of two crystallographically distinct PO43− tetrahedra (designated as P1 and P2), and layer C of Mg2(H2O)6 octahedra and highly irregular K-polyhedra formed by five H2O molecules and one O2− from the P2 tetrahedron. The linkage between layers is principally achieved through hydrogen bonding, except for the K-O5 bond between layers B and C. The structure of Mg2KNa(PO4)2·14H2O has many features similar to those for the struvite analogs of MgK(PO4)·6H2O (Acta Crystallogr. B 35 (1979) 11) or MgNa(PO4)·7H2O (Acta Crystallogr. B 38 (1982) 40) and represents the first struvite-type phosphate compound that contains both K and Na as univalent cations.  相似文献   

13.
The synthesis of a new potassium titanosilicate, K4Ti2Si6O18 (Ti-AV-11), possessing the crystal structure of potassium stannosilicate AV-11, has been reported. The unit cell of this material is trigonal, space group R3 (no. 146), Z=3, a=10.012, c=14.8413 Å, γ=120°, V=1289 Å3. The structure of AV-11 is built up of MO6 (M=Sn, Ti) octahedra and SiO4 tetrahedra by sharing corners. The SiO4 tetrahedra form helix chains, periodically repeating every six tetrahedra. These chains extend along the [001] direction and are linked by isolated MO6 octahedra, thus producing a mixed octahedral-tetrahedral oxide framework. AV-11 materials have been further characterized by bulk chemical analysis, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), 29Si and 119Sn magic-angle spinning (MAS) NMR spectroscopy.  相似文献   

14.
Single crystals of the oxidephosphates TiIIITiIV3O3(PO4)3 (black), CrIII4TiIV27O24(PO4)24 (red-brown, transparent), and FeIII4TiIV27O24(PO4)24 (brown) with edge-lengths up to 0.3 mm were grown by chemical vapour transport. The crystal structures of these orthorhombic members (space group F2dd ) of the lazulite/lipscombite structure family were refined from single-crystal data [TiIIITiIV3O3(PO4)3: Z=24, a=7.3261(9) Å, b=22.166(5) Å, c=39.239(8) Å, R1=0.029, wR2=0.084, 6055 independent reflections, 301 variables; CrIII4TiIV27O24(PO4)24: Z=1, a=7.419(3) Å, b=21.640(5) Å, c=13.057(4) Å, R1=0.037, wR2=0.097, 1524 independent reflections, 111 variables; FeIII4TiIV27O24(PO4)24: Z=1, a=7.4001(9) Å, b=21.7503(2) Å, c=12.775(3) Å, R1=0.049, wR2=0.140, 1240 independent reflections, 112 variables). For TiIIITiIVO3(PO4)3 a well-ordered structure built from dimers [TiIII,IV2O9] and [TiIV,IV2O9] and phosphate tetrahedra is found. The metal sites in the crystal structures of Cr4Ti27O24(PO4)24 and Fe4Ti27O24(PO4)24, consisting of dimers [MIIITiIVO9] and [TiIV,IV2O9], monomeric [TiIVO6] octahedra, and phosphate tetrahedra, are heavily disordered. Site disorder, leading to partial occupancy of all octahedral voids of the parent lipscombite/lazulite structure, as well as splitting of the metal positions is observed. According to Guinier photographs TiIII4TiIV27O24(PO4)24 (a=7.418(2) Å, b=21.933(6) Å, c=12.948(7) Å) is isotypic to the oxidephosphates MIII4TiIV27O24(PO4)24 (MIII: Cr, Fe). The UV/vis spectrum of Cr4Ti27O24(PO4)24 reveals a rather small ligand-field splitting Δo=14,370 cm−1 and a very low nephelauxetic ratio β=0.72 for the chromophores [CrIIIO6] within the dimers [CrIIITiIVO9].  相似文献   

15.
A new sodium hydroxygallophosphate, Na3Ga4O(OH)(H2O)(PO4)4·H2O, has been prepared by hydrothermal synthesis. Its structure has been determined from a single-crystal X-ray diffraction study. It crystallizes in the P21/c space group with the cell parameters a=9.445(2) Å, b=9.028(1) Å, c=19.209(3) Å, β=102.08(2), V=1603.4(4) Å3. Its three-dimensional framework can be described from PO4 monophosphate groups sharing their apices with original Ga4O16(OH)(H2O) tetrameric building units, which result from the assembly of one GaO4 tetrahedron, one GaO5 trigonal bipyramid and two octahedra: GaO5(OH) and GaO4(OH)(H2O). The sodium cations and one water molecule are located in tunnels running along b.  相似文献   

16.
Two isotypic layered rare-earth borate phosphates, K3Ln[OB(OH)2]2[HOPO3]2 (Ln=Yb, Lu), were synthesized hydrothermally and the crystal structures were determined by single-crystal X-ray diffraction (R3?, Z=3, Yb: a=5.6809(2) Å, c=36.594(5) Å, V=1022.8(2) Å3, Lu: a=5.6668(2) Å, c=36.692(2) Å, V=1020.4(1) Å3). The crystal structure can be described in terms of stacking of Glaserite-type slabs consisting of LnO6 octahedra interlinked by phosphate tetrahedra and additional layers of [OB(OH)2]- separated by K+ ions. Field and temperature dependent measurements of the magnetic susceptibility of the Yb-compound revealed Curie-Weiss paramagnetic behavior above 120 K (μeff=4.7 μB). Magnetic ordering was not observed down to 1.8 K.  相似文献   

17.
The hydrated potassium hemimagnesium dihydrogen pyrophosphate KMg0.5H2P2O7·H2O was synthesized. It crystallizes in the triclinic system, space group (n. 2), Z=2, with the following unit-cell parameters: a=6.8565(2) Å, b=7.3621(3) Å, c=7.6202(3) Å, α=81.044(2)°, β=72.248(2)°, γ=83.314(3)°, V=360.90(2) Å3. The structure was obtained by single-crystal X-ray diffractometry, and a full-matrix least-squares refinement based on F2 gave a final R index of =0.0368 (wR=0.0975), utilizing 1446 observed reflections with I>2σ(I). The crystal packing consists in a three-dimensional network made by layers parallel to ab plane of PO4 double tetrahedra and MgO6 octahedra, linked by hydrogen bonds, while K atoms form complex coordination within cavities between tetrahedra and octahedra. The dihydro-pyrophosphate anion (H2P2O7)2− shows bent eclipsed conformation and the Mg2+ ion lies on inversion center. No coincidences observed between most of infrared and Raman spectral bands confirmed the centrosymmetric structure of the title compound; the vibrational spectra point to a bent POP bridge angle.  相似文献   

18.
Two isotypic borophosphates MBPO4(OH)2 (M=Mg, Ni) have been hydrothermally synthesized and structurally characterized by powder X-ray diffraction in the space group P3121. Nickel (or magnesium) atoms are octahedrally coordinated. The octahedra share edges to form helix chains around the three-fold screw-axis. Boron and phosphorus atoms are both tetrahedrally coordinated. The BO4 and PO4 tetrahedra are alternately connected, forming vierer-single chains. These two kinds of chains are intersected in the three-dimensional framework structure. NiBPO4(OH)2 can be considered as a quasi-one-dimensional magnet because the shortest Ni2+-Ni2+ distance within the helix chain is about 3.187(1) Å, while the shortest inter-chain connection of the nickel ions is through a BO4 group (5.650(1) Å). Both dc and alternating current (ac) susceptibilities and isothermal magnetization have been measured on powder sample. The intra- and inter-chain interactions are proved to be both ferromagnetic, and a long-range ordering is established below 2.2 K in NiBPO4(OH)2.  相似文献   

19.
Orange-red Ag4I(PO4) crystallizes in the monoclinic system, space group P21/m (No. 11), with the unit cell dimensions a=9.0874(6) Å, b=6.8809(5) Å, c=11.1260(7) Å, β=109.450(1)°, and Z=4. The crystal structure is fully ordered; it comprises the silver-iodine three-dimensional positively charged framework hosting the tetrahedral PO43− guest anions. The framework features high coordination numbers for iodine and manifold Ag-Ag bonds ranging from 3.01 to 3.46 Å. The Ag-Ag interaction is bonding, it involves silver 4d and 5s orbitals lying, together with the orbitals of iodine, just below the Fermi level. Though the orbitals of silver and iodine define the conducting properties of the title compound, the interaction between the framework and the guest anions is also important and is responsive to the number of the silver atoms surrounding the PO43− tetrahedra. Ag4I(PO4) melts incongruently at 591 K and produces a mixture of the silver phosphate and an amorphous phase upon cooling. Pure Ag4I(PO4) is a poor conductor with a room temperature conductivity of 3×10−6 S m−1. The discrepancies between the properties observed here and those reported previously in the literature are discussed.  相似文献   

20.
A new ammonium indium phosphate (NH4)In(OH)PO4 was prepared by hydrothermal reaction in the In2O3-NH4H2PO4-NH3/OH system (T=200°C, autogenous pressure, 7 days). The formula (NH4)In(OH)PO4 was determined on the basis of chemical and thermal analysis (TG/DSC), X-ray powder diffraction and IR-spectroscopy. (NH4)In(OH)PO4 crystallizes in the tetragonal system with space group P43212 (No. 96); a=9.4232(1) Å, c=11.1766(1) Å, V=992.45(2) Å3; Z=8. The crystal structure was refined by the Rietveld method (Rw=6.35%, Rp=5.10%). The second-harmonic generation study confirmed that structure of (NH4)In(OH)PO4 does not have a center of symmetry. The cis-InO4(OH)2 octahedra form helical chains, parallel to the c-axis. The In-O-In bonds are nearly equidistant. The chains are interconnected by phosphate tetrahedra and create tunnels containing the NH4+ ions along the c-axis. (NH4)In(OH)PO4 is isostructural with RbIn(OH)PO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号