首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MF6- (M = As or Sb) salts of a simple derivative of the trithietanylium PhCSSS+, 1, were synthesized for the first time by the reaction of PhCS3Cl and AgMF6 in liquid SO2. 1SbF6 was characterized by IR, FT-Raman, and NMR spectroscopy, elemental analysis, and a preliminary X-ray crystal structure. 1AsF6 was characterized by 1H NMR and FT-Raman spectroscopy. The calculated (MPW1PW91/3-21G* or 6-31G*) geometries, 1H and 13C chemical shifts (MPW1PW91/6-311G(2DF)//MPW1PW91/3-21G*), and vibrational frequencies and intensities (MPW1PW91/6-31G*) were in satisfactory agreement with the observed values. The calculated pi type molecular orbitals of HCSSS+ (MPW1PW91/6-311+G*) and 1 (MPW1PW91/3-21G*) imply that the 6pi-CSSS+ ring has some aromatic character. 1SbF6 undergoes a metathesis reaction with NBu4Cl in liquid SO2 to give PhCS3Cl, which was characterized by vibrational spectroscopy and mass spectrometry. The evidence indicates that PhCS3Cl has the ionic formulation PhCSSS+ Cl- with significant cation-anion interactions in the solid state. ArCSSS+ SbF6- (Ar = 1-naphthyl), 14SbF6, was prepared from ArCS3Cl and AgSbF6, suggesting that the synthesis of MF6- (M = As or Sb) salts of RCSSS+ is potentially general for aryl derivatives. The structure of 14SbF6 was established by 1H and 13C NMR, IR, and FT-Raman spectroscopy, and theoretical calculations gave values in agreement with the experimental data.  相似文献   

3.
The FT-Raman and FT-IR spectra for benzenesulfonic acid methyl ester (BSAME) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) method by employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for sulfonic acid and some substituted sulfonic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from DFT. The scaled vibrational frequencies at LSDA/B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the sulfonic acid are effected upon profusely with the methyl substitution in comparison to benzene sulfonamide and these differences are interpreted.  相似文献   

4.
Ab initio molecular orbital calculations have been used to investigate the thermal decomposition kinetics of 2-chloroethylethyldichlorosilane at the B3LYP/6-311+G**,B3PW91/6-311+G**,and MPW1PW91/6-311+G** levels of theory.Among these methods,the results(activation parameters) obtained using the B3LYP/6-311+G** level are in good agreement with the available experimental data.The calculated data imply that in the unimolecular β-elimination reactions of the studied compound in the gas phase,the polarization of C(1)-Cl(3) and C(1)-H(4) bonds in the sense of C(1)δ+-Cl(3)δ-and C(1)δ+-H(4)δ-,respectively,is a determining factor in the gas phase elimination reactions 1,2 and 3.Analysis of bond order,natural bond orbital charges,bond indexes,synchro-nicity parameters,and IRC calculations suggest the elimination of 2-chloroethylethyldichlorosilane via reactions 1~3 can be described as concerted and slightly asynchronous.The transition state structures of these reactions are a four-membered cyclic structure.  相似文献   

5.
Density functional theory (DFT) levels are employed to calculate the vibrational frequencies and geometrical data of β-diketones. We evaluate the relative performance of the different levels by comparing theoretical results to experimental values. The applied DFT levels in this work are B3LYP, BLYP, B3P86, B3PW91, BPW91, G96LYP, BP86, and G96PW91 with the standard 6-31G, 6-31G*, 6-31G**, 6-31+G**, 6-31++G**, 6-311G**, 6-311++G** basis sets. The best results are obtained at the B3LYP, B3PW91, and B3P86 levels.  相似文献   

6.
The results of extended MO calculations using density functional theory (DFT) approximation supported by experimental Raman, 1H and 13C NMR studies on thiophene are reported. Raman spectra of liquid thiophene were re-examined and the performance of a hybrid B3PW91 density functional was compared with the ab initio restricted Hartree–Fock (RHF) method. With the basis sets of the 6-311++G** quality, the DFT calculated bond lengths, dipole moments and harmonic vibrations were predicted in a very good agreement with available experimental data.

Additionally, the results on thiophene were extended by calculations on 3-methylthiophene and selenophene. In this case, a significant change in geometry and charge distribution in thiophene ring due to a methyl group substituent or replacement of sulphur by selene atom was observed.

A linear correlation between the predicted harmonic vibrational frequencies (scaled using SQM method) and experimental ones for thiophene, selenophene and 3-methylthiophene was shown. The theoretically calculated spectra have satisfactorily reproduced the available experimental spectra for thiophene and selenophene.  相似文献   


7.
Adiabatic and vertical ionization potentials (IPs) of nine conformers of dopamine in the gas phase are determined using density functional theory (DFT) B3LYP, B3P86, B3PW91 methods and high level ab initio HF method with 6-311++G** basis set, respectively. And the nine stable cationic states have been found in the ionization process of dopamine. Vertical ionization potentials of nine conformers of dopamine are calculated using the older outer-valence Green’s function (OVGF) calculations at 6-311++G** basis set. Vibrational frequencies and infrared spectrum intensities of G1b and G1b+ at B3LYP/6-311++G** level are discussed.  相似文献   

8.
Density functional theory (DFT) methods with various exchange-correlation functionals such as SVWN, BVWN, BVWN5, BLYP, B1LYP, B3LYP, B3PW91, and BH and H are employed in a theoretical study of molecular boric-acid in gas-phase. In the calculations, the split valence 6-311++G** and 6-31G* basis sets were used. The geometry, zero-point vibrational energies (ZPVEs), and harmonic infrared vibrational (IR) frequencies are predicted. The calculated C3h-symmetry geometrical parameters are compared with Hartree–Fock (HF) calculation results and experimental data. IR frequencies predicted by the BLYP, B3LYP, and B3PW91 calculations are in good agreement with experimental data. The frequency calculations presented here also suggest that the C3h-symmetrical structure corresponds to a minimum in the potential energy surface, but neither is D3h- or C3-symmetrical structure.  相似文献   

9.
Density functional theory (DFT)/Becke–Lee–Yang–Parr (B3LYP) and gauge‐including atomic orbital (GIAO) calculations were performed on a number of 1,2,4‐triazole derivatives, and the optimized structural parameters were employed to ascertain the nature of their predominant tautomers. 13C and 15N NMR chemical shifts of 3‐substituted 1,2,4‐triazole‐5‐thiones and their propargylated derivatives were calculated via GIAO/DFT approach at the B3LYP level of theory with geometry optimization using a 6‐311++G** basis set. A good agreement between theoretical and experimental 13C and 15N NMR chemical shifts could be found for the systems investigated. The data generated were useful in predicting 15N chemical shifts of all the nitrogen atoms of the triazole ring, some of which could not be obtained in solution state 15N HMBC/HSQC NMR measurements. The energy profile computed for the dipropargylated derivatives was found to follow the product distribution profile of regioisomers formed during propargylation of 1,2,4‐triazole thiones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The formations of the phosphinidene derivative HPNaF and its insertion reactions with R–H (R=F, OH, NH2, CH3) have been systematically investigated employing the density functional theory (DFT), such as the B3LYP and MPW1PW91 methods. A comparison with the results of MP2 calculations shows that MPW1PW91 underestimates the barrier heights for the four reactions considered. Similarly, the same is also true for the B3LYP method depending on the selected reactions, but by much less than MPW1PW91, where the barrier heights of the four reactions are 25.2, 85.7, 119.0, and 142.4 kJ/mol at the B3LYP/6-311+G* level of theory, respectively. All the mechanisms of the four reactions are identical to each other, i.e., an intermediate has been located during the insertion reaction. Then, the intermediate could dissociate to substituted phosphinidane(H2RP) and NaF with a barrier corresponding to their respective dissociation energies. Correspondingly, the reaction energies for the four reactions are −92.2, −68.1, −57.2, and −44.3 kJ/mol at the B3LYP/6-311+G* level of theory, respectively, where both the B3LYP and MPW1PW91 methods underestimate the reaction energies compared with the MP2 results. The linear correlations between the calculated barrier heights and the reaction energies have also been observed. As a result, the relative reactivity among the four insertion reactions should be as follows: H–F > H–OH > H–NH2 > H–CH3.  相似文献   

11.
The GIAO (Gauge Including Atomic Orbitals) DFT (Density Functional Theory) method is applied at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311+G (2d,p)//B3LYP/6-31+G(d) and B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants for 25 nitro-substituted five-membered heterocycles. Difference (1D NOE) spectra in combination with long-range gHMBC experiments were used as tools for the structural elucidation of nitro-substituted five-membered heterocycles. The assigned NMR data (chemical shifts and coupling constants) for all compounds were found to be in good agreement with theoretical calculations using the GIAO DFT method. The magnitudes of one-bond (1JCH) and long-range (nJCH, n>1) coupling constants were utilized for unambiguous differentiation between regioisomers of nitro-substituted five-membered heterocycles.  相似文献   

12.
A series of model tertiary amines were oxidized in situ in an NMR tube to amine N-oxides and their (1)H and (13)C NMR spectra were recorded. Next, the chemical shifts induced by oxidation (Δδ) were calculated using different GIAO methods investigating the influence of the method [Hartree-Fock (HF), Moeller-Plesset perturbation, density functional theory (DFT)], the functional applied in the DFT (B3LYP, BPW, OPBE, OPW91) and the basis set used [6-31G*, 6-311G**, 6-311 + + G** and 6-311 + + G(3df,3pd)]. The best results were obtained with the HF/6-311 + + G** and OPBE/6-311 + + G** methods. The computation/experiment comparison approach was used for the configuration prediction of chiral amine N-oxides-(R) and (S)-agroclavine-6-N-oxide.  相似文献   

13.
Molecular structure of 1,1,1-trifluoro-pentane-2,4-dione, known as trifluoro-acetylacetone (TFAA), has been investigated by means of Density Functional Theory (DFT) calculations and the results were compared with those of acetylacetone (AA) and hexafluoro-acetylacetone (HFAA). The harmonic vibrational frequencies of both stable cis-enol forms were calculated at B3LYP level of theory using 6-31G** and 6-311++G** basis sets. We also calculated the anharmonic frequencies at B3LYP/6-31G** level of theory for both stable cis-enol isomers. The calculated frequencies, Raman and IR intensities, and depolarization ratios were compared with the experimental results. The energy difference between the two stable cis-enol forms, calculated at B3LYP/6-311++G**, is only 5.89 kJ/mol. The observed vibrational frequencies and Raman and IR intensities are in excellent agreement with the corresponding values calculated for the most stable conformation, 2TFAA. According to the theoretical calculations, the hydrogen bond strength for the most stable conformer is 57 kJ/mol, about 9.5kJ/mol less than that of AA and about 14.5 kJ/mol more than that of HFAA. These hydrogen bond strengths are consistent with the frequency shifts for OH/OD stretching and OH/OD out-of-plane bending modes upon substitution of CH(3) groups with CF(3) groups. By comparing the vibrational spectra of both theoretical and experimental data, it was concluded that 2TFAA is the dominant isomer.  相似文献   

14.
We have calculated the intermolecular interaction potentials of the silane dimer at the D3d conformation using the Hartree-Fock (HF) self-consistent theory, the correlation-corrected second-order M?ller-Plesset (MP2) perturbation theory, and the density functional theory (DFT) with 108 functionals chosen from the combinations of 9 exchange and 12 correlation functionals. Single-point coupled cluster [CCSD(T)] calculations have also been carried out to calibrate the correlation effect. The HF calculations yield unbound potentials largely because of the exchange-repulsion interaction. In the MP2 calculations, the basis set effects on the repulsion exponent, the equilibrium bond length, the binding energy, and the asymptotic behavior of the calculated intermolecular potentials have been thoroughly studied. We have employed basis sets from the Slater type orbitals fitted with Gaussian functions (STO-nG, n = 3 approximately 6), Pople's medium size basis sets [up to 6-311++G(3df,3pd)], to Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). With increasing basis size, the repulsion exponent and the equilibrium bond length converge at the 6-31G** basis set and the 6-311++G(3d,3p) basis set, respectively, while a large basis set (aug-cc-pVTZ) is required to converge the binding energy at a chemical accuracy ( approximately 0.05 kcal/mol). Up to the largest basis set used, the asymptotic dispersion coefficient has not converged to the expected C6 value from molecular polarizability calculations. We attribute the slow convergence partly to the inefficacy of using the MP2 calculations with Gaussian type functions to model the asymptotic behavior. Both the basis set superposition error (BSSE) corrected and uncorrected results are presented to emphasize the importance of including such corrections. Only the BSSE corrected results systematically converge to the expected potential curve with increasing basis size. The DFT calculations generate a wide range of interaction patterns, from purely unbound to strongly bound, underestimating or overestimating the binding energy. The binding energies calculated using the OPTXHCTH147, PBEVP86, PBEP86, PW91TPSS, PW91PBE, and PW91PW91 functionals and the equilibrium bond lengths calculated using the MPWHCTH93, TPSSHCTH, PBEVP86, PBEP86, PW91TPSS, PW91PBE, and PW91PW91 functionals are close to the MP2 results using the 6-311++G(3df,3pd) basis set. A correlation between the calculated DFT potentials and the exchange and correlation enhancement factors at the low-density region has been elucidated. The asymptotic behaviors of the DFT potentials are also analyzed.  相似文献   

15.
We have tested three pure density functional theory (DFT) functionals, BLYP, MPWPW91, MPWB95, and ten hybrid DFT functionals, B3LYP, B3P86, B98, MPW1B95, MPW1PW91, BMK, M05-2X, M06-2X, B2GP-PLYP, and DSD-BLYP with a series of commonly used basis sets on the performance of predicting the bond energies and bond distances of 31 small neutral noble-gas containing molecules. The reference structures were obtained using the CCSD(T)∕aug-cc-pVTZ theory and the reference energies were based on the calculation at the CCSD(T)∕CBS level. While in general the hybrid functionals performed significantly better than the pure functionals, our tests showed a range of performance by these hybrid functionals. For the bond energies, the MPW1B95∕6-311+G(2df,2pd), BMK∕aug-cc-pVTZ, B2GP-PLYP∕aug-cc-pVTZ, and DSD-BLYP∕aug-cc-pVTZ methods stood out with mean unsigned errors of 2.0-2.3 kcal∕mol per molecule. For the bond distances, the MPW1B95∕6-311+G(2df,2pd), MPW1PW91∕6-311+G(2df,2pd), and B3P86∕6-311+G(2df,2pd), DSD-BLYP∕6-311+G(2df,2pd), and DSD-BLYP∕aug-cc-pVTZ methods stood out with mean unsigned errors of 0.008-0.013 A? per bond. The current study showed that a careful selection of DFT functionals is very important in the study of noble-gas chemistry, and the most recommended methods are MPW1B95∕6-311+G(2df,2pd) and DSD-BLYP∕aug-cc-pVTZ.  相似文献   

16.
Cycloolefin copolymers (COC) have recently raised much interest because of their excellent thermal and optical properties, largely determined by the chain composition and stereochemistry. Previous force‐field computations allowed us to define the main conformational characteristics of ethylene–norbornene (E–N) copolymers and to contribute to the elucidation of their microstructure on the basis of empirical relationships between conformation and 13C nuclear magnetic resonance (NMR) chemical shifts. A thorough test of ab initio 13C chemical shifts computations [gauge‐invariant atomic orbitals (GIAO)] on known cases shows that the agreement with experimental data is quite good, especially with the MPW1PW91 density functional theory (DFT), using the 6‐311+G(2d,p) basis set on properly energy‐minimized structures. We applied this method on proper model compounds to confirm the signal assignment of the spectra of E–N copolymers in the presence of norbornene microblocks, where strong effects arising from ring distortions are expected to occur. The results nicely confirm the latest assignment of norbornene signals belonging to ENNE sequences. This shows the great potentialities of GIAO/DFT computations with regard to complex spectra interpretation and polymer microstructural investigations. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

17.
Proton chemical shifts of eight cyclic amide molecules were measured in DMSO and D2O solutions. The magnetic shieldings of the corresponding aliphatic, aromatic, and amide protons were calculated by Hartree-Fock and DFT, using the 6-311G**, 6-311++G**, and TZVP basis sets. For aliphatic protons, all of these methods reproduce the experimental values in DMSO solutions excellently after linear regression. The Hartree-Fock method tends to give slightly better agreement than DFT. The best performance is given by the HF/6-311G** method, with an rms deviation of 0.068 ppm. The deviations from experimental chemical shifts in D2O solutions are only slightly larger than those in DMSO solutions. This suggests that we can use the calculated gas phase proton chemical shifts directly to predict experimental data in various solvents, including water. For amide protons, which exchange with water and form hydrogen bonds with DMSO, only modest agreement is obtained, as expected. The present studies confirm that the GIAO approach can reach high accuracy for the relative chemical shifts of aliphatic and aromatic protons at a low cost. Such calculations may provide constraints for the conformational analysis of proteins and other macromolecules.  相似文献   

18.
The temperature dependence of the 1 H NMR resonance of the C‐4 olefinic proton in vinylcyclopropane was investigated through a combination of ab initio calculations and Boltzmann statistics. A torsional energy profile as a function of the 〈?〉 dihedral angle was obtained using HF methodology with a 6–311G** basis set, while the corresponding 1 H chemical shift profiles for the C‐4 proton were computed using the GIAO approach and either HF, DFT (B3LYP) or MP2 methods at the 6–311G** level of theory. Chemical shifts at different temperatures calculated as canonical ensemble averages in which the different ab initio 1 H chemical shift profiles and a Boltzmann factor defined by the HF/ 6–311G** energy function are employed reproduce remarkably well the temperature dependence observed experimentally. Attempts to perform a similar study using only the GIAO‐MP2 1 H chemical shift profile and 〈?〉 dihedral angle trajectories obtained from molecular dynamics simulations at different temperatures failed to reproduce the experimental trends. This shortcoming was attributed to the inability of the force fields employed, Tripos 6.0 and MMFF94, to reproduce properly the three‐well torsional potential of vinylcyclopropane. The application of both methodologies to the calculation of population‐dependent chemical shifts in other systems is discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
DFT(B3LYP, B3PW91) calculations in conjunction with three different basis sets have been utilized to investigate the variations in the bond lengths, dipole moment, rotational constants, IR frequencies, IR intensities and rotational invariants of ClCCCN. The nuclear quadrupole constants of chlorine ((35)Cl, (37)Cl) and nitrogen ((14)N) of ClCCCN have been calculated on the experimental r(s) structure as well as on the B3PW91/6-311++g(d,p) optimized geometry and were found to be within the scale length of the experimental uncertainty. The slope and intercept obtained from the regression analysis between the B3LYP/6-311++g(d,p) level calculated and experimental B(o) values of ClCCCN were used to calculate reasonable values of rotational constants of all the rare isotopic species of ClCCCN having standard deviation +/-0.048 MHz. All the spectroscopic parameters obtained from DFT calculations show satisfactory agreement with the available experimental data.  相似文献   

20.
α-Acyloxycarboxamides are synthesized from three-component Passerini reaction between indane-1,2,3-trione, isocyanides, and thiophenecarboxylic acids in quantitative yields. The structures of the final products were confirmed by IR, 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. The B3LYP/HF calculations for computation of 1H and 13C NMR chemical shifts have been carried out for the title compounds at the 6-311+G** and 6-311++G** basis set levels within GIAO and CSGT approaches. Predicted 1H and 13C NMR che-mical shifts have been assigned and compared with experimental 1H and 13C NMR spectra and they are supported each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号