首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A strategy to deliver a well‐defined persulfide species in a biological medium is described. Under near physiological conditions, the persulfide prodrug can be activated by an esterase to generate a “hydroxymethyl persulfide” intermediate, which rapidly collapses to form a defined persulfide. Such persulfide prodrugs can be used either as chemical tools to study persulfide chemistry and biology or for future development as H2S‐based therapeutic reagents. Using the persulfide prodrugs developed in this study, the reactivity between S ‐methyl methanethiosulfonate (MMTS) with persulfide was unambiguously demonstrated. Furthermore, a representative prodrug exhibited potent cardioprotective effects in a murine model of myocardial ischemia‐reperfusion (MI/R) injury with a bell shape therapeutic profile.  相似文献   

2.
Overproduction of superoxide anion (O2.?), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.? to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2S). Termed SOPD‐NAC , this persulfide donor reacts specifically with O2.?, decomposing to generate N‐acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self‐assembling peptide (Bz‐CFFE‐NH2) to make a superoxide‐responsive, persulfide‐donating peptide ( SOPD‐Pep ). Both SOPD‐NAC and SOPD‐Pep delivered persulfides/H2S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD‐Pep mitigated toxicity induced by phorbol 12‐myristate 13‐acetate (PMA) more effectively than SOPD‐NAC and several control compounds, including common H2S donors.  相似文献   

3.
Persulfides (RSSH) have been hypothesized as critical components in sulfur‐mediated redox cycles and as potential signaling compounds, similar to hydrogen sulfide (H2S). Hindering the study of persulfides is a lack of persulfide‐donor compounds with selective triggers that release discrete persulfide species. Reported here is the synthesis and characterization of a ROS‐responsive (ROS=reactive oxygen species), self‐immolative persulfide donor. The donor, termed BDP‐NAC, showed selectivity towards H2O2 over other potential oxidative or nucleophilic triggers, resulting in the sustained release of the persulfide of N‐acetyl cysteine (NAC) over the course of 2 h, as measured by LCMS. Exposure of H9C2 cardiomyocytes to H2O2 revealed that BDP‐NAC mitigated the effects of a highly oxidative environment in a dose‐dependent manner over relevant controls and to a greater degree than common H2S donors sodium sulfide (Na2S) and GYY4137. BDP‐NAC also rescued cells more effectively than a non‐persulfide‐releasing control compound in concert with common H2S donors and thiols.  相似文献   

4.
Overproduction of superoxide anion (O2.−), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.− to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2S). Termed SOPD-NAC , this persulfide donor reacts specifically with O2.−, decomposing to generate N-acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self-assembling peptide (Bz-CFFE-NH2) to make a superoxide-responsive, persulfide-donating peptide ( SOPD-Pep ). Both SOPD-NAC and SOPD-Pep delivered persulfides/H2S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD-Pep mitigated toxicity induced by phorbol 12-myristate 13-acetate (PMA) more effectively than SOPD-NAC and several control compounds, including common H2S donors.  相似文献   

5.
Lamotrigine (LTG) is an antiepileptic drug used for the prevention of convulsions. Except several known side effects, hepatic dysfunction is also reported. Hepatotoxic side effects occur due to the dichlorophenyl moiety which develops an abnormally low level of glutathione. Depletion of glutathione causes oxidative stress and hepatic cell damage. The goal of the present study was to test the action and side effects of the three compounds synthesised and compared to LTG. Three amide prodrugs of LTG were synthesised by its reaction with N-acetylamino acids, viz, glycine, glutamic acid, and methionine. Purified synthesised prodrugs were subjected to thin layer chromatography, melting point, solubility and partition coefficients determination and characterised by UV, FTIR, 1H and 13C NMR spectroscopy. The synthesised prodrugs were subjected to in vitro hydrolysis and to anticonvulsant and hepatotoxic activity studies. Significant reduction in hepatotoxicity and comparable anticonvulsant activities were obtained in all synthesised prodrugs as compared to LTG.  相似文献   

6.
Reactive sulfur species, such as hydrogen sulfide, persulfides, and polysulfides, have recently emerged as key signaling molecules and important physiological mediators within mammalian systems. To better assess the therapeutic potential of their exogenous administration, we report on the development of a unique hydrogen peroxide (H2O2)-sensing motif and its capacity for providing cellular protection against oxidative stress while serving as a reactive oxygen species (ROS)-activated persulfide donor. With the strategic implementation of a gem-dimethyl group to promote both stability and cyclization, we found the initial rate of payload release from this newly derived scaffold to be directly proportional to the concentration of H2O2 and to proceed via an unprecedented pathway that avoids the production of electrophilic byproducts, a severe limitation that has plagued the physiological application of previous designs.  相似文献   

7.
ABSTRACT

The free COOH group of conventional NSAIDs is a structural feature for non-selective cyclooxygenase (COX) inhibition and the molecular cause of their gastrointestinal (GI) toxicity. In this context, an in house database of synthesizable ester prodrugs of some well-known NSAIDs was developed by combining their -COOH group with -OH of a newly identified antioxidant 4-(1H-benzo[d]imidazol-2-yl)phenol (BZ). The antioxidant potential of BZ was unveiled through in silico PASS prediction and in vitro/in vivo evaluation. The in house database of NSAIDs-BZ prodrugs was first subjected to screening with our previously reported pharmacophore models of hCES1 (AAHRR.430) and hCES2 (AHHR.21) for determining hydrolytic susceptibility. Biotransformation behaviour of screened prodrugs was then assessed by using QM/MM and sterimol parameterization, followed by ADMET calculations to predict the drug likeness. On the basis of in silico results, five prodrugs were duly synthesized and the best three were subject to the in vivo evaluation for their anti-inflammatory, analgesic, antioxidant activities, and ulcerogenic index. Among these prodrugs, BN2 and BN5 displayed better anti-inflammatory and analgesics potential in comparison to their parent drugs. All the prodrugs were found to be gastro sparing in the rat model and significantly improved the levels of oxidative stress biomarkers in both blood plasma as well as gastric homogenate.  相似文献   

8.
Pt(IV) anticancer active complexes are commonly regarded as prodrugs, and the reduction of the prodrugs to their Pt(II) analogs is the activation process. The reduction of a cisplatin prodrug cis‐[Pt(NH3)2Cl4] and a carboplatin prodrug cis,trans‐[Pt(cbdca)(NH3)2Cl2] by dl ‐homocysteine (Hcy) has been investigated kinetically in a wide pH range in this work. The reduction process follows overall second‐order kinetics: −d [Pt(IV)]/dt = k ′[Hcy]tot[Pt(IV)], where [Hcy]tot stands for the total concentration of Hcy and k ′ pertains to the observed second‐order rate constants. The k ′ versus pH profiles have been established for both prodrugs. Spectrohotometric titrations reveal a stoichiometry of Δ[Pt(IV)]:Δ[Hcy]tot = 1:2; homocystine is identified as the major oxidation product of Hcy by high‐resolution mass spectrometry. A reaction mechanism has been proposed, which involves all the four protolysis species of Hcy attacking the Pt(IV) prodrugs in parallel. Moreover, these parallel attacks are the rate‐determining steps, resulting in a Cl+ transfer from the Pt(IV) prodrugs to the attacking sulfur atom. Rate constants of the rate‐determining steps have been derived, indicating that the two prodrugs are reduced with a very similar rate in spite of the difference between the coordination ligands in their equatorial positions. The reactivity analysis in the case of cis,trans‐[Pt(cbdca)(NH3)2Cl2] unravels that one species of Hcy (form III ) is almost exclusively responsible for the reductions at the physiological pH (7.4), although it is existing only 5.2% of the total Hcy. On the other hand, the dominant existing form II of Hcy virtually does not make a contribution to the overall reactivity at pH 7.4.  相似文献   

9.
Both a persulfide crystal of L-L(1), the oxidative coupling product of 1-phenyl-1H-tetrazole-5-thiol(HL), and a neutral copper(I) complex of Cu6L6(2) were self-assembled and their crystal architectures were characterized by CCD method. HL was converted into the persulfide L-L(1) over a metalloporphyrin catalyst with enzymatic characters under ambient conditions. Whlie in the crystal architecture of Cu6L6(2), 6 copper(I) ions were ligated by 6L-anions to construct a Cu6 ring, which just resembled the chair c...  相似文献   

10.
Cancer cells are vulnerable to reactive oxygen species (ROS) due to their abnormal redox environment. Accordingly, combination of chemotherapy and oxidative stress has gained increasing interest for the treatment of cancer. We report a novel seleno-prodrug of gemcitabine (Gem), Se–Gem, and evaluated its activation and biological effects in cancer cells. Se–Gem was prepared by introducing a 1,2-diselenolane (a five-membered cyclic diselenide) moiety into the parent drug Gemvia a carbamate linker. Se–Gem is preferably activated by glutathione (GSH) and displays a remarkably higher potency than Gem (up to a 6-fold increase) to a panel of cancer cell lines. The activation of Se–Gem by GSH releases Gem and a seleno-intermediate nearly quantitatively. Unlike the most ignored side products in prodrug activation, the seleno-intermediate further catalyzes a conversion of GSH and oxygen to GSSG (oxidized GSH) and ROS via redox cycling reactions. Thus Se–Gem may be considered as a suicide agent to deplete GSH and works by a combination of chemotherapy and oxidative stress. This is the first case that employs a cyclic diselenide in prodrug design, and the success of Se–Gem as well as its well-defined action mechanism demonstrates that the 1,2-diselenolane moiety may serve as a general scaffold to advance constructing novel therapeutic molecules with improved potency via a combination of chemotherapy and oxidative stress.

The 1,2-diselenolane unit is a general scaffold to construct glutathione-dependent prodrugs that show increased potency to cancer cells, and work via a combination of chemotherapy and oxidative stress.  相似文献   

11.
N-acetyl-l-cysteine (NAC) is an antioxidant and a supplement and has been demonstrated to have protective effects for a variety of toxic effects of heavy metals. Although previous works have shown that NAC can ameliorate the severe toxic effects of cisplatin, there is a lack of understanding of the interactions between NAC and Pt(IV)-based prodrugs. In this work, the oxidation of NAC by a cisplatin prodrug (cis-[Pt(NH3)2Cl4]), by a prototype of Pt(IV) anticancer drug ormaplatin ([Pt(dach)Cl4]) and by a model compound (trans-[PtCl2(CN)4]2–) was characterized in detail. NAC was oxidized to NAC-disulfide as identified by mass spectrometric analysis. Time-resolved spectral and stopped-flow kinetic measurements were carried out over a wide pH range, demonstrating that the oxidation followed overall second-order kinetics. The observed second-order rate constants k′ versus pH profiles were established. A reaction mechanism was deduced, involving three parallel rate-determining steps; conceivable transition states were also proposed for these steps. Rate constants of the rate-determining steps, obtained from the simulations of rate equation to the k′–pH profiles, were largely correlated with the electron density on the sulfur atom in NAC. The Pt(IV) prodrugs can execute oxidative stress in the biological systems of the human body by direct oxidation of relevant molecules, similar to HOCl/OCl? and chloroamines. Instead, the oxidative stress involved in the severe toxic effects of cisplatin is produced via a different mode. NAC could be a chemoprotecting agent also for the Pt(IV) anticancer drugs if recent drug delivery technologies are used.  相似文献   

12.
Persulfides and polysulfides, collectively known as the sulfane sulfur pool along with hydrogen sulfide (H2S), play a central role in cellular physiology and disease. Exogenously enhancing these species in cells is an emerging therapeutic paradigm for mitigating oxidative stress and inflammation that are associated with several diseases. In this study, we present a unique approach of using the cell''s own enzyme machinery coupled with an array of artificial substrates to enhance the cellular sulfane sulfur pool. We report the synthesis and validation of artificial/unnatural substrates specific for 3-mercaptopyruvate sulfurtransferase (3-MST), an important enzyme that contributes to sulfur trafficking in cells. We demonstrate that these artificial substrates generate persulfides in vitro as well as mediate sulfur transfer to low molecular weight thiols and to cysteine-containing proteins. A nearly 100-fold difference in the rates of H2S production for the various substrates is observed supporting the tunability of persulfide generation by the 3-MST enzyme/artificial substrate system. Next, we show that the substrate 1a permeates cells and is selectively turned over by 3-MST to generate 3-MST-persulfide, which protects against reactive oxygen species-induced lethality. Lastly, in a mouse model, 1a is found to significantly mitigate neuroinflammation in the brain tissue. Together, the approach that we have developed allows for the on-demand generation of persulfides in vitro and in vivo using a range of shelf-stable, artificial substrates of 3-MST, while opening up possibilities of harnessing these molecules for therapeutic applications.

A persulfide/hydrogen sulfide generation strategy through artificial substrates for 3-mercaptopyruvate sulfurtransferase (3-MST) is reported, which enhances cellular persulfides, attenuates reactive oxygen species (ROS), and alleviates inflammation.  相似文献   

13.

Cytarabine (1-β-d-arabinofuranosylcytosine, Ara-C), a pyrimidine nucleoside analogue, is used for the treatment of both acute and chronic myeloblastic leukemias and non-Hodgkin lymphoma. It has a very short plasma half-life and a very low oral bioavailability. To overcome these disadvantages, much effort has been focused on the design of cytarabine prodrugs. In this study, we have synthesized four different cytarabine prodrugs in order to increase the drug lipophilicity and the affinity of the prodrugs toward the biological membranes, as well as the lipophilic carriers. Differential scanning calorimetry was used to study the interaction of cytarabine and its prodrugs with multilamellar vesicles (MLVs) made of dimyristoylphosphatidylcholine (DMPC) and used as a model of biomembranes as well as a lipophilic carrier. The results showed that the 4-N-acetyl-2′,3′-5′-acetyl derivative and the prodrug with short chain fatty acids do not have a significant affinity with MLVs, whereas the prodrugs with long chain fatty acids have a stronger affinity with the MLVs with respect to cytarabine. The entity of the affinity depends on the fatty acids length. The increased affinity could be due to the fatty acid moieties which allow the molecule to insert among the phospholipid molecules. These results provide information on the interaction of these prodrugs with biomembranes and could be useful to design liposomes as carriers for the prodrugs.

  相似文献   

14.
Exposure of mammalian cells to oxidative stress alters lysosomal enzymes. Through cytochemical analysis of lysosomes with LysoTracker, we demonstrated that the number and fluorescent intensity of lysosome-like organelles in HeLa cells increased with exposure to hydrogen peroxide (H2O2), 6-hydroxydopamine (6-OHDA), and UVB irradiation. The lysosomes isolated from HeLa cells exposed to three oxidative stressors showed the enhanced antimicrobial activity against Escherichia coli. Further, when lysosomes that were isolated from HeLa cells exposed by oxidative stress were treated to normal HeLa cells, the viability of the HeLa cells was drastically reduced, suggesting increased in vitro lysosomal function (i.e., antimicrobial activity, apoptotic cell death). In addition, we also found that cathepsin B and D were implicated in increased in vitro lysosomal function when isolated from HeLa cells exposed by oxidative stress. Decrease in cathepsin B activity and increase in cathepsin D activity were observed in lysosomes isolated from HeLa cells after treatment with H2O2, 6-ODHA, or UVB, but cathepsin B and D were not the sole factors to induce cell death by in vitro lysosomal function. Therefore, these studies suggest a new approach to use lysosomes as antimicrobial agents and as new materials for treating cancer cell lines.  相似文献   

15.
The adaptive response of the fungus Blakeslea trispora to the oxidative stress induced by butylated hydroxytoluene (BHT) during carotene production in shake flask culture was investigated. The culture response to oxidative stress was studied by measuring the specific activities of catalase (CAT) and superoxide dismutase (SOD) and the micromorphology of the fungus using a computerized image analysis system. The addition of exogenous BHT to the medium caused changes of the morphology of microorganism from aggregates with large projected area to aggregates with small projected area. This morphological differentiation of the fungus was associated with high oxidative stress as evidenced by remarkable increase of the specific activities of CAT and SOD. The oxidative stress in B. trispora resulted in a fivefold increase of carotene production. The highest concentration of carotenes (125.0 mg/g dry biomass) was obtained in culture grown in medium supplemented with 20 mM of BHT.  相似文献   

16.
Current cancer therapy is seriously challenged by tumor metastasis and recurrence. One promising solution to these problems is to build antitumor immunity. However, immunotherapeutic efficacy is highly impeded by the immunosuppressive state of the tumors. Here a new strategy is presented, catalytic immunotherapy based on artificial enzymes. Cu2?xTe nanoparticles exhibit tunable enzyme‐mimicking activity (including glutathione oxidase and peroxidase) under near‐infrared‐II (NIR‐II) light. The cascade reactions catalyzed by the Cu2?xTe artificial enzyme gradually elevates intratumor oxidative stress to induce immunogenic cell death. Meanwhile, the continuously generated oxidative stress by the Cu2?xTe artificial enzyme reverses the immunosuppressive tumor microenvironment, and boosts antitumor immune responses to eradicate both primary and distant metastatic tumors. Moreover, immunological memory effect is successfully acquired after treatment with the Cu2?xTe artificial enzyme to suppress tumor relapse.  相似文献   

17.
Dipeptides containing D-phenylglycine or D-p-hydroxyphenylglycine were attached onto the antihypertensive agent α-methyldopa to form prodrugs 1a , 1b and 1c . The nonessential amino acids were introduced into the prodrug molecules as tools of chemical delivery to improve the intestinal absorption of the parent drug. Preliminary tests revealed that the prodrugs were stable in phosphate buffer solutions at pH 7.4 (t1/2 > 10 h). These compounds also demonstrated satisfactory stability toward enzymatic degradation in a mucosa preparation isolated from rat intestine, indicating that they might be feasibly formulated as an oral prodrug of α-methyldopa.  相似文献   

18.
Amphiphilic self-immolative polymers (SIPs) can achieve complete degradation solely through one triggerable event, which potentially optimize the blood clearance and uncontrollable/inert degradability for therapeutic nanoparticles. Herein, we report self-immolative amphiphilic poly(ferrocenes), BP nbs -Fc , composed by self-immolative backbone and aminoferrocene (AFc) side chains as well as end-capping poly(ethylene glycol) monomethyl ether. Upon triggering by tumor acidic milieu, the BP nbs -Fc nanoparticles readily degrade to release azaquinone methide (AQM) moieties, which can rapidly deplete intracellular glutathione (GSH) to cascade release AFc. Furthermore, both AFc and its product Fe2+ can catalyze intracellular hydrogen peroxide (H2O2) into highly reactive hydroxyl radicals (⋅OH), thus amplifying the oxidative stress of tumor cells. Rational synergy of GSH depletion and ⋅OH burst can efficiently inhibit tumor growth by the SIPs in vitro and in vivo. This work provides an elegant design to adopt innate tumor milieu-triggerable SIPs degradation to boost cellular oxidative stress, which is a promising candidate for precision medicine.  相似文献   

19.
It has previously been demonstrated that baculovirus infection of the Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) insect cell lines leads to oxidative stress as measured by protein and membrane lipid oxidation and that this oxidative damage contributes to cell death. As a result of these findings, it was hypothesized that baculovirus infection stimulates superoxide radical (O 2 ·— synthesis in the mitochondria and that the resulting O 2 ·— accumulation overwhelms the cells’ antioxidant defenses. We investigated the ability of manganese superoxide dismutase (MnSOD) expression (which reduces O 2 ·— to H2O2) to overcome the oxidative damage caused by baculovirus infection. It was found that MnSOD expression significantly reduced oxidative damage in baculovirus-infected Tn-5B1-4 cells but had no significant effect on oxidative damage in baculovirus-infected Sf-9 cells. The results are consistent with the hypothesis that O 2 ·— accumulation in the mitochondria is at least partially responsible for the oxidative damage resulting from the baculovirus infection of insect cells.  相似文献   

20.
UVA‐driven photooxidative stress in human skin may originate from excitation of specific endogenous chromophores acting as photosensitizers. Previously, we have demonstrated that 3‐hydroxypyridine‐derived chromophores including B6‐vitamers (pyridoxine, pyridoxamine and pyridoxal) are endogenous photosensitizers that enhance UVA‐induced photooxidative stress in human skin cells. Here, we report that the B6‐vitamer pyridoxal is a sensitizer of genotoxic stress in human adult primary keratinocytes (HEKa) and reconstructed epidermis. Comparative array analysis indicated that exposure to the combined action of pyridoxal and UVA caused upregulation of heat shock (HSPA6, HSPA1A, HSPA1L, HSPA2), redox (GSTM3, EGR1, MT2A, HMOX1, SOD1) and genotoxic (GADD45A, DDIT3, CDKN1A) stress response gene expression. Together with potentiation of UVA‐induced photooxidative stress and glutathione depletion, induction of HEKa cell death occurred only in response to the combined action of pyridoxal and UVA. In addition to activational phosphorylation indicative of genotoxic stress [p53 (Ser15) and γ‐H2AX (Ser139)], comet analysis indicated the formation of Fpg‐sensitive oxidative DNA lesions, observable only after combined exposure to pyridoxal and UVA. In human reconstructed epidermis, pyridoxal preincubation followed by UVA exposure caused genomic oxidative base damage, procaspase 3 cleavage and TUNEL positivity, consistent with UVA‐driven photooxidative damage that may be relevant to human skin exposed to high concentrations of B6‐vitamers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号