首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simple amino acid-derived esters have been identified as promising chiral sources for the ytterbium-catalyzed aldol-Tishchenko reaction of aromatic aldehydes with aliphatic ketones. The 1,3-anti-diols with three stereogenic centers were isolated in excellent yields, complete anti-diastereocontrol and enantioselectivities of up to 50% ee.  相似文献   

2.
α,α‐Disubstituted allylic pinacol boronic esters undergo highly selective allylborations of aldehydes to give tetrasubstituted homoallylic alcohols with exceptional levels of antiZ‐selectivity (>20:1). The scope of the reaction includes both acyclic and cyclic allylic boronic esters which lead to acyclic and exocyclic tetrasubstituted homoallylic alcohols. The use of β‐borylated allylic boronic esters gave fully substituted alkenes bearing a boronic ester which underwent further cross‐coupling enabling a highly modular and stereoselective approach to the synthesis of diaryl tetrasubstituted alkenes. Computational analysis revealed the origin of the remarkable selectivity observed.  相似文献   

3.
The preparation of acyclic β-fluoro amines bearing tetrasubstituted fluorine stereocenters is described via a direct Zn/ProPhenol-catalyzed Mannich reaction. The reaction utilizes branched vinyl or alkynyl α-fluoro ketones that can be coupled with a range of aryl, heteroaryl, vinyl, or cyclopropyl aldimines in high yield and with excellent diastereo- (up to >20:1) and enantioselectivity (up to 99 %). The use of readily cleaved tert-butoxycarbonyl (Boc) or carboxybenzyl (Cbz) imine protecting groups adds utility to the reaction by allowing for easy access to the free amine products under mild and chemoselective reaction conditions.  相似文献   

4.
We report that a nickel catalyst system with a modified 1,1′-spirobiindane-7,7′-diol-phosphoramidite (SPINOL) as the chiral ligand can enable the coupling of tertiary cyclobutenols and arylboroxines in an enantioconvergent manner, providing cyclobutenes with an all-carbon quaternary stereocenter in good yields (up to 84 % yield) with excellent enantioselectivities (up to >99 % ee). Moreover, the catalytic system can be applied in the kinetic resolution of cyclobutenols under slightly modified conditions, giving enantioenriched tertiary cyclobutenols with an s factor of up to >200. The reaction uses free hydroxyl groups as the leaving group without additional activation while the strained ring remains untouched. Preliminary mechanistic studies reveal that the inherent discrepant reactivity of the two enantiomers is the key to the controllable enantioconvergent and kinetic resolution process.  相似文献   

5.
《Tetrahedron: Asymmetry》2006,17(4):708-715
Regio- and stereoselective lipase-catalyzed kinetic resolutions were investigated for some unsymmetrical, secondary/secondary syn-diols. Candida antarctica lipase B-catalyzed transesterifications of a few aryl/alkyl- and alkyl/alkyl 1,2-diols were coupled in one-pot for efficient ruthenium-catalyzed epimerization and intramolecular acyl migration to give a dynamic kinetic asymmetric transformation (DYKAT) affording enantioenriched (ee up to >99%) syn-diacetates as the main diastereomers (syn:anti ∼2:1 to 10:1).  相似文献   

6.
The preparation of acyclic β‐fluoro amines bearing tetrasubstituted fluorine stereocenters is described via a direct Zn/ProPhenol‐catalyzed Mannich reaction. The reaction utilizes branched vinyl or alkynyl α‐fluoro ketones that can be coupled with a range of aryl, heteroaryl, vinyl, or cyclopropyl aldimines in high yield and with excellent diastereo‐ (up to >20:1) and enantioselectivity (up to 99 %). The use of readily cleaved tert‐butoxycarbonyl (Boc) or carboxybenzyl (Cbz) imine protecting groups adds utility to the reaction by allowing for easy access to the free amine products under mild and chemoselective reaction conditions.  相似文献   

7.
Iodotrimethylsilane effects conversion of acyclic bis-secondary 2-ene-1,4-diols to 1,3-dienes in moderate yield. The reaction with 3-hexene-2,5-diol favors anti elimination but is largely nonstereospecific.  相似文献   

8.
Herein we report the cycloisomerization of electron‐poor 1,5‐dienes via the β‐azolium ylide to give enantioenriched cyclopentenes. The reaction is mediated by a chiral N‐heterocyclic carbene (NHC) catalyst, exploits readily available substrates, has good generality (17 examples), and displays excellent enantioselectivity (mostly >94:6). Studies demonstrating the viability of a related dynamic kinetic resolution are reported, as are those with alternate tethers and derivatizations.  相似文献   

9.
Six different bacterial haloalkane dehalogenases were recombinantly produced in Escherichia coli, purified, and used to catalyse the conversion of prochiral short-chain dihaloalkanes and a meso dihaloalkane, yielding enantioenriched haloalcohols. A two-reaction one-enzyme process was established in which the desymmetrisation of a dihaloalkane is followed by kinetic resolution of the chiral haloalcohol that is produced in the first step. In case of 1,3-dibromo-2-methylpropane and 1,3-dibromo-2-phenylpropane, an increase of the enantiomeric excess of the respective haloalcohol was observed in time, leading to ee values of >97%, with analytical yields of 24 and 52%, respectively. The results show that haloalkane dehalogenases can be used for the production of highly enantioenriched haloalcohols and that in some cases product enantiopurity can be improved by allowing a two-step one-enzyme tandem reaction.  相似文献   

10.
In order to obtain optically active fluorinated propargyl alcohols, a lipase-catalyzed kinetic resolution has been carried out. The effect of lipase types, organic solvents, reaction temperature, and acyl donors was examined in the lipase-catalyzed transesterification of 1,1,1-trifluoro-4-phenyl-3-butyn-2-ol. Various enantiomerically pure fluorinated propargyl alcohols have been successfully prepared in good enantiomeric excess (>84%) by Novozym 435-catalyzed transesterification with vinyl butanoate at 60 °C in n-hexane. In some cases, the enantiomeric purities were excellent (>99% ee).  相似文献   

11.
Recent years have witnessed marked progress in the efficient synthesis of various enantioenriched 1,2,3,4-tetrahydroquinoxalines. However, enantio- and diastereoselective access to trans-2,3-disubstituted 1,2,3,4-tetrahydroquinoxalines remains much less explored. Herein we report that a frustrated Lewis pair-based catalyst generated via in situ hydroboration of 2-vinylnaphthalene with HB(C6F5)2 allows for the one-pot tandem cyclization/hydrosilylation of 1,2-diaminobenzenes and 1,2-diketones with commercially available PhSiH3 to exclusively afford trans-2,3-disubstituted 1,2,3,4-tetrahydroquinoxalines in high yields with excellent diastereoselectivities (>20 : 1 dr). Furthermore, this reaction can be rendered asymmetric by using an enantioenriched borane-based catalyst derived from HB(C6F5)2 and a binaphthyl-based chiral diene to give rise to enantioenriched trans-2,3-disubstituted 1,2,3,4-tetrahydroquinoxalines in high yields with almost complete diastereo- and enantiocontrol (>20 : 1 dr, up to >99 % ee). A wide substrate scope, good tolerance of diverse functionality and up to 20-gram scale production are demonstrated. The enantio- and diastereocontrol are achieved by the judicious choice of borane catalyst and hydrosilane. The catalytic pathway and the origin of the excellent stereoselectivity are elucidated by mechanistic experiments and DFT calculations.  相似文献   

12.
The catalytic diastereodivergent construction of stereoisomers having two or more stereogenic centers has been extensively studied. In contrast, the switchable introduction of another stereogenic element, that is, Z/E configuration involving a polysubstituted alkene group, into the optically active stereoisomers, has not been recognized yet. Disclosed here is the pseudo‐stereodivergent synthesis of highly enantioenriched tetrasubstituted alkene architectures from isatin‐based Morita–Baylis–Hillman carbonates and allylic derivatives, under the cooperative catalysis of a tertiary amine and a chiral iridium complex. The success of the switchable construction of the tetrasubstituted alkene motif relies on the diastereodivergent 1,3‐oxo‐allylation reaction between N‐allylic ylides and chiral π‐allyliridium complex intermediates by ligand and substrate control, followed by the stereoselective concerted 3,3‐Cope rearrangement process.  相似文献   

13.
Atroposelective synthesis of axially chiral biaryls by palladium-catalyzed C−H olefination, using tert-leucine as an inexpensive, catalytic, and transient chiral auxiliary, has been realized. This strategy provides a highly efficient and straightforward access to a broad range of enantioenriched biaryls in good yields (up to 98 %) with excellent enantioselectivities (95 to >99 % ee). Kinetic resolution of trisubstituted biaryls bearing sterically more demanding substituents is also operative, thus furnishing the optically active olefinated products with excellent selectivity (95 to >99 % ee, s-factor up to 600).  相似文献   

14.
A highly efficient asymmetric cascade reaction between alkynyl esters and allylic alcohols has been realized. Key to success was the combination of a hydroalkoxylation reaction catalyzed by a π-acidic gold(I) complex with a Claisen rearrangement catalyzed by a chiral Lewis acidic N,N′-dioxide–nickel(II) complex. A range of acyclic α-allyl β-keto esters were synthesized in high yields (up to 99 %) with good diastereoselectivities (up to 97:3) and excellent enantioselectivities (up to 99 % ee) under mild reaction conditions. These products can be easily transformed into optically active β-hydroxy esters, β-hydroxy acids, or 1,3-diols.  相似文献   

15.
Kinetic resolution is a powerful strategy for the isolation of enantioenriched compounds from racemic mixtures, and the development of selective catalytic processes is an active area of research. Here, we present a nickel-catalyzed kinetic resolution of racemic α-substituted unconjugated carbonyl alkenes via the enantio-, diastereo-, and regioselective hydroamination. This protocol affords both chiral α-substituted butenamides and syn2,3-amino acid derivatives with high enantiomeric purity (up to 99 % ee) and selectivity factor up to >684. The key to the excellent kinetic resolution efficiency is the distinctive architecture of the chiral nickel complex, which enables successful resolution and enantioselective C−N bond construction. Mechanistic investigations reveal that the unique structure of the chiral ligand facilitates a rapid migratory insertion step with one enantiomer. This strategy provides a practical and versatile approach to prepare a wide range of chiral compounds.  相似文献   

16.
The synthesis of 1,3-diaminated stereotriads via the bis-aziridination of allenes is reported. The reactive 1,4-diazaspiro[2.2]pentane intermediates undergo a mild Br?nsted acid-promoted rearrangement to yield 1,3-diaminated ketones in good yields with excellent stereocontrol. Directed reduction of the ketone can be achieved to yield a C-N/C-O/C-N stereotriad in high dr. The ability to transfer the axial chirality of the substrates to the products allows for the facile preparation of enantioenriched stereotriads from allenes in two simple steps.  相似文献   

17.
The catalytic diastereodivergent construction of stereoisomers having two or more stereogenic centers has been extensively studied. In contrast, the switchable introduction of another stereogenic element, that is, Z/E configuration involving a polysubstituted alkene group, into the optically active stereoisomers, has not been recognized yet. Disclosed here is the pseudo-stereodivergent synthesis of highly enantioenriched tetrasubstituted alkene architectures from isatin-based Morita–Baylis–Hillman carbonates and allylic derivatives, under the cooperative catalysis of a tertiary amine and a chiral iridium complex. The success of the switchable construction of the tetrasubstituted alkene motif relies on the diastereodivergent 1,3-oxo-allylation reaction between N-allylic ylides and chiral π-allyliridium complex intermediates by ligand and substrate control, followed by the stereoselective concerted 3,3-Cope rearrangement process.  相似文献   

18.
(S)‐Selective kinetic resolution was achieved through the use of a commercially available protease, which was activated with a combination of two different surfactants. The kinetic resolution (KR) process was optimized with respect to activation of the protease and to the acyl donor. The KR proved to be compatible with a range of functionalized sec‐alcohols, giving good to high enantiomeric ratio values (up to >200). The enzymatic resolution was combined with a ruthenium‐catalyzed racemization to give an (S)‐selective dynamic kinetic resolution (DKR) of sec‐alcohols. The DKR process works under very mild reaction conditions to give the corresponding esters in high yields and with excellent enantioselectivities.  相似文献   

19.
The asymmetric aldol-Tishchenko reaction of aromatic aldehydes with aliphatic and aromatic ketones has been developed as an efficient strategy for the synthesis of anti-1,3-diols in good yield with high diastereocontrol and good levels of enantioselectivity. This domino-type reaction is catalyzed by a chiral ytterbium complex that promotes both the aldol reaction through enolization of the carbonyl compound and the Evans-Tishchenko reduction of the aldol intermediate. The stereochemistry of the resulting diols is also investigated and finally proved by using CD techniques.  相似文献   

20.
The skeletons of chiral tetrasubstituted allenes bearing a vicinal all-carbon quaternary stereocenter are of importance but still challenging to synthesize. Herein, we report enantio- and diastereoselective γ-additions of 1-alkynyl ketimines with dual-copper-catalysis under mild conditions, affording chiral tetrasubstituted α-amino allenoates bearing a vicinal all-carbon quaternary stereocenter in high yields (up to 99 % yield) with excellent enantioselectivities (up to 99 % ee) and diastereoselectivities (up to >20 : 1 dr). Importantly, the stereodivergent synthesis of the products was realized by the asymmetric γ-addition reaction and the Grignard reagent promoted epimerization. Moreover, the dual-copper-catalyzed γ-addition reactions were smoothly applied to a gram-scale reaction and adopted to introduce chiral tetrasubstituted allenyl moieties into bioactive molecules. Mechanistic experiments and density functional theory (DFT) calculations demonstrated that the asymmetric γ-addition reactions were catalyzed by double chiral copper catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号