首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chalcogen bonding is the non‐covalent interaction between Lewis acidic chalcogen substituents and Lewis bases. Herein, we present the first application of dicationic tellurium‐based chalcogen bond donors in the nitro‐Michael reaction between trans‐β‐nitrostyrene and indoles. This also constitutes the first activation of nitro derivatives by chalcogen bonding (and halogen bonding). The catalysts showed rate accelerations of more than a factor of 300 compared to strongly Lewis acidic hydrogen bond donors. Several comparison experiments, titrations, and DFT calculations support a chalcogen‐bonding‐based mode of activation of β‐nitrostyrene.  相似文献   

2.
In the last years the use of chalcogen bonding—the noncovalent interaction involving electrophilic chalcogen centers—in noncovalent organocatalysis has received increased interest, particularly regarding the use of intermolecular Lewis acids. Herein, we present the first use of tellurium-based catalysts for the activation of a carbonyl compound (and only the second such activation by chalcogen bonding in general). As benchmark reaction, the Michael-type addition between trans-crotonophenone and 1-methylindole (and its derivatives) was investigated in the presence of various catalyst candidates. Whereas non-chalcogen-bonding reference compounds were inactive, strong rate accelerations of up to 1000 could be achieved by bidentate triazolium-based chalcogen bond donors, with product yields of >90 % within 2 h of reaction time. Organotellurium derivatives were markedly more active than their selenium and sulphur analogues and non-coordinating counterions like BArF4 provide the strongest dicationic catalysts.  相似文献   

3.
Benzodiselenazoles (BDS) are emerging as privileged structures for chalcogen‐bonding catalysis in the focal point of conformationally immobilized σ holes on strong selenium donors in a neutral scaffold. Whereas much attention has been devoted to work out the advantages of selenium compared to the less polarizable sulfur donors, high expectations concerning bidentate, rigid, and neutral scaffolds have been generated with little experimental support. Here we report design, synthesis and evaluation of the necessary catalysts to confirm that i) bidentate BDS are more effective than their monodentate analogs, ii) conformationally immobilized scaffolds are more effective than more flexible ones, iii) cationic BDS scaffolds are more effective than neutral ones, and iv) in dicationic‐bidentate BDS, contributions from chalcogen‐bonding dominate possible contributions from ion‐pairing catalysis. These conclusions result from rate enhancements found for a Ritter‐type anion‐binding reaction and an X‐ray crystal structure of dicationic BDS with a triflate anion bound with highest precision in the focal point of the σ holes.  相似文献   

4.
5.
Halogen‐ and chalcogen‐based σ‐hole interactions have recently received increased interest in non‐covalent organocatalysis. However, the closely related pnictogen bonds have been neglected. In this study, we introduce conceptually simple, neutral, and monodentate pnictogen‐bonding catalysts. Solution and in silico binding studies, together with high catalytic activity in chloride abstraction reactions, yield compelling evidence for operational pnictogen bonds. The depth of the σ holes is easily varied with different substituents. Comparison with homologous halogen‐ and chalcogen‐bonding catalysts shows an increase in activity from main group VII to V and from row 3 to 5 in the periodic table. Pnictogen bonds from antimony thus emerged as by far the best among the elements covered, a finding that provides most intriguing perspectives for future applications in catalysis and beyond.  相似文献   

6.
Halogen‐ and chalcogen‐based σ‐hole interactions have recently received increased interest in non‐covalent organocatalysis. However, the closely related pnictogen bonds have been neglected. In this study, we introduce conceptually simple, neutral, and monodentate pnictogen‐bonding catalysts. Solution and in silico binding studies, together with high catalytic activity in chloride abstraction reactions, yield compelling evidence for operational pnictogen bonds. The depth of the σ holes is easily varied with different substituents. Comparison with homologous halogen‐ and chalcogen‐bonding catalysts shows an increase in activity from main group VII to V and from row 3 to 5 in the periodic table. Pnictogen bonds from antimony thus emerged as by far the best among the elements covered, a finding that provides most intriguing perspectives for future applications in catalysis and beyond.  相似文献   

7.
A series of heteroditopic receptors containing halogen bond (XB) and unprecedented chalcogen bond (ChB) donors integrated into a 3,5-bis-triazole pyridine structure covalently linked to benzo-15-crown-5 ether motifs exhibit remarkable cooperative recognition of halide anions. Multi-nuclear 1H, 13C, 125Te and 19F NMR, ion pair binding investigations reveal sodium cation–benzo-crown ether binding dramatically enhances the recognition of bromide and iodide halide anions, with the chalcogen bonding heteroditopic receptor notably displaying the largest enhancement of halide binding strength of over two hundred-fold, in comparison to the halogen bonding and hydrogen bonding heteroditopic receptor analogues. DFT calculations suggest crown ether sodium cation complexation induces a polarisation of the sigma hole of ChB and XB heteroditopic receptor donors as a significant contribution to the origin of the unique cooperativity exhibited by these systems.  相似文献   

8.
Activation of a deep electron-deficient area on chalcogen atoms (Ch=Se, Te) is demonstrated in alkynyl chalcogen derivatives, in the prolongation of the (C≡)C−Ch bond. The solid-state structures of 1,4-bis(methylselenoethynyl)perfluorobenzene ( 1Se ) show the formation of recurrent chalcogen-bonded (ChB) motifs. Association of 1Se and the tellurium analogue 1Te with 4,4′-bipyridine and with the stronger Lewis base 1,4-di(4-pyridyl)piperazine gives 1:1 co-crystals with 1D extended structures linked by short and directional ChB interactions, comparable to those observed with the corresponding halogen bond (XB) donor, 1,4-bis(iodoethynyl)-perfluorobenzene. This “alkynyl” approach for chalcogen activation provides the crystal-engineering community with efficient, and neutral ChB donors for the elaboration of supramolecular 1D (and potentially 2D or 3D) architectures, with a degree of strength and predictability comparable to that of halogen bonding in iodoacetylene derivatives.  相似文献   

9.
In the last years, chalcogen bonding, the noncovalent interaction involving chalcogen centers, has emerged as interesting alternative to the ubiquitous hydrogen bonding in many research areas. Here, we could show by means of high‐level quantum chemical calculations that the carbonyl???tellurazole chalcogen bond is at least as strong as conventional hydrogen bonds. Using the carbonyl???tellurazole binding motif, we were able to design complex supramolecular networks in solid phase starting from tellurazole‐substituted cyclic peptides. X‐ray analyses reveal that the rigid structure of the cyclic peptides is caused by hydrogen bonds, whereas the supramolecular network is held together by chalcogen bonding. The type of the supramolecular network depends on peptide used; both linear wires and a honeycomb‐like supramolecular organic framework (SOF) were observed. The unique structure of the SOF shows two channels filled with different types of solvent mixtures that are either locked or freely movable.  相似文献   

10.
A series of heteroditopic receptors containing halogen bond (XB) and unprecedented chalcogen bond (ChB) donors integrated into a 3,5‐bis‐triazole pyridine structure covalently linked to benzo‐15‐crown‐5 ether motifs exhibit remarkable cooperative recognition of halide anions. Multi‐nuclear 1H, 13C, 125Te and 19F NMR, ion pair binding investigations reveal sodium cation–benzo‐crown ether binding dramatically enhances the recognition of bromide and iodide halide anions, with the chalcogen bonding heteroditopic receptor notably displaying the largest enhancement of halide binding strength of over two hundred‐fold, in comparison to the halogen bonding and hydrogen bonding heteroditopic receptor analogues. DFT calculations suggest crown ether sodium cation complexation induces a polarisation of the sigma hole of ChB and XB heteroditopic receptor donors as a significant contribution to the origin of the unique cooperativity exhibited by these systems.  相似文献   

11.
Higher catalytic performances of N,N′,N′′‐trihydroxyisocyanuric acid (THICA), N,N‐dihydroxypyromellitimide (NDHPI), and N‐hydroxynaphthalimide (NHNI) than that of N‐hydroxyphthalimide (NHPI) have been demonstrated recently in aerobic oxidation. Herein, the rational design of reactive multi‐nitroxyl organocatalysts has been addressed theoretically by using systematic analysis of some important properties and catalytic activities of yet‐to‐be‐synthesized catalysts. Our results show that 1) NHNI and its analogue, similar to THICA, unlike NHPI and others, are unsuitable for solvent‐ or mediator‐free catalysis due to their strong intramolecular hydrogen‐bonding interactions; 2) increasing the reactive hydroxyimide groups on the same aromatic ring, or doped N atoms or ionic‐pair groups onto the aromatic ring, can improve catalytic reactivity, whereas appropriate enlargement of conjugated aromatic systems results in unchanged activity; 3) the newly designed catalysts are more active than NHPI and NHNI and have catalytic activities comparable to NDHPI and THICA; 4) the ionic‐pair supported case is suggested to be a very active catalyst, even towards inert propane, and can be used as a novel model catalyst for further improvements. The present work will be helpful in designing reactive hydroxyimide organocatalysts.  相似文献   

12.
This article describes studies on the catalytic activity of several nitrogen‐based organic catalysts for the depolymerization of poly(ethylene terephthalate) (PET), in which a few cyclic amidines work more effectively than a potent, bifunctional guanidine‐based catalyst 1,5,7‐triazabicyclo‐[4,4,0]‐dec‐5‐ene (TBD) in the presence of short chain diols that play a role in activation of carbonyl groups through hydrogen bonding. Further studies prove that the catalytic efficiency at the above specific conditions depends only on the extent of activation of a hydroxyl group rather than simply the pKa of the bases. For glycolysis with excess short‐chain alkanediols, 1,8‐diazabicyclo[5.4.0]undec‐7‐ene is the best catalyst. In contrast, TBD shows outstanding catalytic activity in depolymerizations of PET with mono‐alcohols and longer‐chain diols. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Transition-metal dichalcogenides (TMDs) have promising properties for their use as catalysts of CO2 reduction to methane via the Sabatier reaction. In this article we use density-functional theory calculations to gain insight into the energetics of this reaction for Mo/W-based and S/Se-based TMDs with non-, Ni- and Cu-doping. We show that sulfur-based TMDs with Ni/Cu doping exhibit better indicators for catalytic performance of the CO2 reduction reaction than non-doped and doped TMDs without active sites. In addition, the role of the transition metal was found to a much smaller influence in the reaction than the role of the chalcogen and dopant atoms, which influence the bonding strength and type, respectively.  相似文献   

14.
Certain cancer cells proliferate under conditions of oxidative stress (OS) and might therefore be selectively targeted by redox catalysts. Among these catalysts, compounds containing a chalcogen and a quinone redox centre are particularly well suited to respond to the presence of OS. These catalysts combine the specific electrochemical features of quinones and chalcogens. They exhibit high selectivity and efficiency against oxidatively stressed rat PC12, human Jurkat and human Daudi cells in cell culture, where their mode of action most likely involves the catalytic activation of existent and the generation of new reactive oxygen species. The high efficiency and selectivity shown by these catalysts makes them interesting for the development of anti-cancer drugs.  相似文献   

15.
A detailed theoretical study of the mechanism and energetics of an organocatalysis based on C?N activation by halogen‐bonding is presented for the hydrocyanation of N‐benzylidenemethylamine. The calculations at the level of scalar‐relativistic gradient‐corrected density functional theory give an insight in this catalytic concept and provide information on the characteristics of four different monodentate catalyst candidates acting as halogen‐bond donors during the reaction. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Hydrogen bonding is responsible for the structure of much of the world around us. The unusual and complex properties of bulk water, the ability of proteins to fold into stable three-dimensional structures, the fidelity of DNA base pairing, and the binding of ligands to receptors are among the manifestations of this ubiquitous noncovalent interaction. In addition to its primacy as a structural determinant, hydrogen bonding plays a crucial functional role in catalysis. Hydrogen bonding to an electrophile serves to decrease the electron density of this species, activating it toward nucleophilic attack. This principle is employed frequently by Nature's catalysts, enzymes, for the acceleration of a wide range of chemical processes. Recently, organic chemists have begun to appreciate the tremendous potential offered by hydrogen bonding as a mechanism for electrophile activation in small-molecule, synthetic catalyst systems. In particular, chiral hydrogen-bond donors have emerged as a broadly applicable class of catalysts for enantioselective synthesis. This review documents these advances, emphasizing the structural and mechanistic features that contribute to high enantioselectivity in hydrogen-bond-mediated catalytic processes.  相似文献   

17.
Various heterogeneous zinc glutarate (ZnGA) catalysts were synthesized in solvent systems of various polarities from zinc acetate dihydrate and glutaric acid with and without the aid of an amphiphilic block copolymer, poly(ethylene glycol‐b‐propylene glycol‐b‐ethylene glycol) (PE6400), as a template. The presence of the PE6400 template and the polarity of the solvent significantly affected the morphology, particle size, surface area, and crystallinity of the resulting catalyst. However, all the catalysts had the same crystal lattice unit cell structure and similar surface compositions. The surface compositions of the catalysts were quite different from those of conventionally prepared ZnGA catalysts, that is, those prepared from zinc oxide and glutaric acid in toluene. All these characteristics of the catalysts influenced the ZnGA‐catalyzed copolymerization of carbon dioxide and propylene oxide. The catalytic activities of the catalysts in this copolymerization depended primarily on their surface area and secondarily on their crystallinity; a larger surface area and a higher crystallinity resulted in higher catalytic activity. Of the catalysts that we prepared, the ZnGA catalyst that was prepared in ethanol containing 5.5 wt % water with the PE6400 template, ZnGA‐PE3, exhibited the highest catalytic activity in the copolymerization. The catalytic activity of ZnGA‐PE3 was attributed to its wrinkled petal bundle morphology, which provided a large surface area and high crystallinity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4079–4088, 2005  相似文献   

18.
Group 16 chalcogens potentially provide Lewis-acidic σ-holes, which are able to form attractive supramolecular interactions with electron rich partners through chalcogen bonds. Here, a multifaceted experimental and computational study of a large series of novel chalcogen-bonded cocrystals, prepared using the principles of crystal engineering, is presented. Single-crystal X-ray diffraction studies reveal that dicyanoselenadiazole and dicyanotelluradiazole derivatives work as promising supramolecular synthons with the ability to form double chalcogen bonds with a wide range of electron donors including halides and oxygen- and nitrogen-containing heterocycles. Extensive 77Se and 125Te solid-state nuclear magnetic resonance spectroscopic investigations of cocrystals establish correlations between the NMR parameters of selenium and tellurium and the local chalcogen bonding geometry. The relationships between the electronic environment of the chalcogen bond and the 77Se and 125Te chemical shift tensors were elucidated through a natural localized molecular orbital density functional theory analysis. This systematic study of chalcogen-bond-based crystal engineering lays the foundations for the preparation of the various multicomponent systems and establishes solid-state NMR protocols to detect these interactions in powdered materials.  相似文献   

19.
Intramolecular chalcogen bonding in arylhydrazones of sulfamethizole is strengthened by conjugation in the π-system of a noncovalent five-membered ring. The S⋅⋅⋅O distance in the sulfamethizole moiety of these compounds ranges from 2.698(3) to 2.806(15) Å, which indicates its strong dependence on the attached arylhydrazone fragments. Information on the nature of the intramolecular chalcogen bond was afforded by DFT calculations.  相似文献   

20.
Quantum chemical calculations are applied to complexes of 6-OX-fulvene (X=H, Cl, Br, I) with ZH3/H2Y (Z=N, P, As, Sb; Y=O, S, Se, Te) to study the competition between the hydrogen bond and the halogen bond. The H-bond weakens as the base atom grows in size and the associated negative electrostatic potential on the Lewis base atom diminishes. The pattern for the halogen bonds is more complicated. In most cases, the halogen bond is stronger for the heavier halogen atom, and pnicogen electron donors are more strongly bound than chalcogen. Halogen bonds to chalcogen atoms strengthen in the order O<S<Se<Te, whereas the pattern is murkier for the pnicogen donors. In terms of competition, most halogen bonds to pnicogen donors are stronger than their H-bond analogues, but there is no clear pattern with respect to chalcogen donors. O prefers a H-bond, while halogen bonds are favored by Te. For S and Se, I-bonds are strongest, followed Br, H, and Cl-bonds in that order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号