首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of benzotriazole (BTA) derivatives were synthesized as tyrosine protein kinase inhibitors using fragment-based design strategy. All desired compounds were synthesized with the reaction of benzotriazole, chloroacetonitrile and aromatic aldehyde using Ultrasonic-Microwave method and characterized by IR, 1H and 13C-NMR, mass spectrometry (MS) and elemental analysis. The anticancer activity of these compounds was evaluated by CCK-8 method against carcinoma VX2, lung cancer A549, stomach cancer cell lines MKN45 and MGC in vitro. The results showed that all compounds showed good antiproliferative activity. In particular, compound 2.1 showed the most prominent inhibition of VX2 cell lines with IC50 of 3.80 ± 0.75 μM. Compound 2.2 exhibited highly potent anticancer activity of stomach MGC cell lines with IC50 of 3.72 ± 0.11 μM. A549 and MKN45 cell lines were sensitive to compound 2.5 with IC50 of 5.47 ± 1.11 and 3.04 ± 0.02 μM, respectively.  相似文献   

2.
Two ruthenium complexes containing a new phenanthroline-based ligand pai (pai = 2-(5-(1, 10- phenanthroline))-1H-acenaphtho[1′,2′:4,5]imidazole) were synthesized and characterized. Two ruthenium complexes were found to cleave DNA under irradiation, interact with CT-DNA by intercalation. Furthermore, DNA topoisomerase inhibition experiments indicated that complex 2 exhibited higher topoisomerase I inhibition activity (IC50 = 10 μM) than complex 1 (IC50 = 40 μM). Molecular modeling studies revealed that complex 2 stabilized Top1cc complex via π-π interaction and the formation of hydrogen bond. The cytotoxicity of complexes 1 and 2 against Eca-109 and A549 cells was also evaluate by MTT method, indicating that complex 2 exhibited good anticancer activity against Eca-109 cells (IC50 = 17.23 ± 0.22 μM), but two ruthenium complexes displayed weak anticancer activity against A549 cells.  相似文献   

3.
A series of thieno[2,3-d]pyrimidines were designed and synthesized as epidermal growth factor receptor (EGFR) inhibitors. These compounds were tested for their ability to inhibit MCF-7 and A549 cancer cells. The most active compound, 12c , inhibited the growth of both cell lines, with IC50 values of 15.67 and 12.16 μM, respectively. It was found that 12c had inhibitory effects on both EGFRWT and EGFRT790M isoforms, with inhibitory partialities of 37.50 and 148.90 nM, respectively. Additionally, 12c was found to be safer than erlotinib against normal cell lines (IC50 = 38.61 μM). Compound 12c induced early and late apoptosis in A549 cells and arrested cell growth at G1 and G2/M phases. 12c was also found to increase caspases 3 and 8 ratios. Molecular docking indicated the correct binding modes of the synthesized compounds. MD simulations, MM-GBSA, and PLIP studies confirmed the precise binding of 12c to the EGFR protein over 100 ns.  相似文献   

4.
Inhibition of the enzyme catechol O‐methyltransferase (COMT) is of significant interest in the therapy of Parkinson's disease. Described herein are structural analogs of the potent bisubstrate inhibitor (?)‐ 1 (IC50=9 nM ; Table 1) for COMT, with target modifications of the central ribose moiety. Their synthesis involves, as key intermediates, adenosine derivatives, which are transformed to the potential bisubstrate inhibitors by a similar sequence of six steps (Schemes 14). The compounds were submitted to an enzymatic assay for determination of their in vitro inhibitory activity against COMT, and the inhibition mechanism with respect to the binding side of the cofactor S‐adenosylmethionine (SAM) was analyzed by kinetics measurements (Fig. 3). Both binding affinity and binding mode were exceedingly sensitive towards modifications of the ribose moiety (Table 1). Removal of the 2′‐OH group upon changing from (?)‐ 1 to (?)‐ 2 (IC50=28 μM ) led to a reduction in binding affinity by more than three orders of magnitude. At the same time, competitive inhibition kinetics with respect to the SAM binding site was maintained, thereby supporting a bisubstrate binding mode. Unlike (?)‐ 2 , the dideoxyribose inhibitor (?)‐ 3 (IC50=3 μM ) showed a mixed and the cyclopentane derivative (+)‐ 4 (IC50=1 μM ) an uncompetitive inhibition mechanism with respect to the SAM binding site. In the complex of the latter, the adenine‐substituted cyclopentane ring orients most probably towards the surface of the enzyme into the surrounding solution. The enantiomeric compounds (?)‐ 5 (IC50=43 μM ) and (+)‐ 5 (IC50=141 μM ), wherein the ribose had been replaced by a pyrrolidine ring, showed only low binding affinity.  相似文献   

5.
In this work, peripheral or nonperipheral tetra‐[4‐(9H‐carbazol‐9‐yl)phenoxy] substituted cobalt(II), manganese (III) phthalocyanines were synthesized for the first time. Their acetylcholinesterase from Electrophorus electricus (AChE), butyrylcholinesterase equine serum (BuChE), and α‐glucosidase Saccharomyces cerevisiae inhibition were investigated spectrophotometrically. Finally, in vitro cytotoxicities of the compounds were investigated on human neuroblastoma (SH‐SY5Y) cell line using MTT cell viability assay. The compounds inhibited to enzymes in the range of 7.39 ± 0.25–35.29 ± 2.49 μM with IC50 values for AChE and 14.38 ± 0.66–58.02 ± 4.94 μM for BuChE as compared with galantamine, which used as a positive control. For α‐glucosidase, all compounds had stronger inhibition action than acarbose according to the IC50 values. The IC50 values of N? Co and N? Mn were found to be 3.05 ± 0.10 and 15.82 ± 1.85 μM, respectively. The results of cytotoxicity showed that the IC50 values were above 100 μM showing the compounds had low cytotoxic action against SH‐SY5Y cell line for 24 h. Overall, carbazole substituted nonperipheral compounds can be considered as a potential agent for the treatment of Alzheimer's diseases and diabetes mellitus.  相似文献   

6.
Two new prenylated xanthones (=9H‐xanthen‐9‐ones), garcimangosxanthones D ( 1 ) and E ( 2 ), together with the six known xanthones 3 – 8 , were isolated from the pericarp of Garcinia mangostana. Their structures were determined by analysis of their spectroscopic data. All of the isolated compounds were biologically evaluated for their in vitro cytotoxic activity against A549, Hep‐G2, and MCF‐7 human‐cancer cell lines and antioxidant activity. Compound 1 exhibited moderate cytotoxicity against Hep‐G2 (IC50=19.2 μM ) and weak cytotoxicity against MCF‐7 (IC50=62.8 μM ) cell lines, and compound 2 showed moderate cytotoxicity against A549, Hep‐G2, and MCF‐7 cell lines with IC50 values of 12.5–20.0 μM (Table 2). Both compounds 1 and 2 demonstrated a weak antioxidant activity with ferric reducing antioxidant power (FRAP) values of 41±7 and 130±4 μmol/g, respectively (Table 3).  相似文献   

7.
In this paper, we describe the synthesis of some new quinoxaline-piperazine-oxazole amide conjugates 6a-n from 3-chloroquinoxaline-2-carbonitrile using well-known reaction sequences. The synthesized compounds were characterized by 1H NMR,13C NMR, and mass spectral analysis. The compounds were tested for their in vitro antiproliferative activity toward four different cancer cell lines such as PC-3, MCF-7, DU-145, and A-549 by MTT method. The compounds, 6c, 6h, 6i , and 6n were found to be more potent than the standard Erlotinib. In vitro tyrosine kinase EGFR inhibition studies using four potent compounds revealed that 6n has double inhibiting tendency with value IC50 of 0.22 μM and 6h with value of IC50 0.27 μM compared to reference compound. Molecular docking studies of active compounds, 6c , 6h , 6i , and 6n on EGFR receptor suggested that all the compounds have more binding energies than that of Erlotinib. Furthermore, the in silico pharmacokinetic profile was accomplished for the active compounds, 6c , 6h , 6i , and 6n using SWISS/ADME and pk CSM, whereas compounds, 6h , 6i , and 6c followed Lipinski rule, Veber rule, Egan rule and Muegge rule. The remaining compound 6n did not follow Lipinski rule, Ghose rule because one common violation, that is, because of high molecular weight (MW > 350).  相似文献   

8.
A series of combretastatin A-4 based chalcones ( 14a-l ) were designed, synthesized and these compounds examined for inhibitory effects on the proliferation of human lung (A549), breast (MCF-7), melanoma (A375), and colon (HT-29) carcinoma cells. Compounds 14b , 14c , 14e , 14h , and 14i (tri/dimethoxy, methyl, and mono/dinitro derivatives) have exhibited the most potent antiproliferative activity with IC50 < 2 μM and the hexa methoxy derivative 14b , the most promising one, which displayed the potent inhibitory activities in MCF-7 (IC50: 10 nM), A375 (IC50: 12 nM), and A549 (IC50: 65 nM) cell lines, and is 18 times more potent than the CA-4. Compound 14b represents a new scaffold and the results provide insights into further development of anticancer agents.  相似文献   

9.
The first concise synthesis of the bidesmosidic oleanolic acid saponins 1 – 3 isolated from Fadogia ancylantha (Makoni tea) have been accomplished through a ‘one‐pot sequential glycosylation’ strategy with two glycosyl 1‐(trichloroacetimidate)s as glycosyl donors. The synthesized natural products 1 – 3 were then evaluated for their inhibitory activities against α‐glucosidase, α‐amylase, and lipase. Among the assayed compounds 1 – 3 , compound 1 showed strong α‐glucosidase and α‐amylase inhibition, with IC50 values of 160 and 180 μM , respectively. Moreover, compounds 2 and 3 showed strong inhibition against α‐glucosidase and lipase, with the respective IC50 values of 170 and 190 μM , and 190 and 200 μM .  相似文献   

10.
Jatrophodione A ( 1 ), a new diterpene with four rings, together with nine known compounds, caniojane ( 2 ), jatropholone A ( 3 ), jatropholone B ( 4 ), jatrogrossidione ( 5 ), 2‐epijatrogrossidione ( 6 ), heudelotinone ( 7 ), gossweilone ( 8 ), (3α)‐3‐hydroxy‐ent‐pimara‐8(14),15‐dien‐12‐one ( 9 ), and 12‐hydroxy‐13‐methylpodocarpa‐8,11,13‐trien‐3‐one ( 10 ), was isolated from the aerial parts of Jatropha curcas. Compounds 5, 6, 9 , and 10 were found for the first time in this plant. Their structures were established by spectroscopic analysis, including 2D‐NMR spectroscopic techniques. Cytotoxicities of compounds 1, 2, 7, 8 , and 9 were tested on the three cancer cell lines A549, Hela, and SMMC‐7721. Results showed that 7 exhibited cytotoxicity against SMMC‐7721 with an IC50 value of 21.68 μM , whereas 7 and 8 were active against A549 with the IC50 values of 16.04 and 20.47 μM , and against Hela with the IC50 values of 10.67 and 22.83 μM , respectively.  相似文献   

11.
《合成通讯》2012,42(1):71-84
Abstract

A series of amide derivatives of azaindole-oxazoles (11a-n) were designed and synthesized and their structures were confirmed by 1HNMR, 13CNMR and mass spectral analysis. Further, these derivatives were screened for their anticancer activity against human cancer cell lines viz; MCF7 (breast), A549 (lung) and A375 (melanoma). In vitro anticancer activity screening indicated that most of the hybrids exhibited potent inhibitory activities in a variety of cancer cell lines. Among the compounds 11d, 11e, 11f, 11j, 11k, 11l, 11m, and 11n were exhibited more potent activity than standard, in those mainly two compounds 11m and 11j were exhibited excellent activity in MCF-7 cell line with IC50 values 0.034 and 0.036?µM. Moreover, all these compounds were carried out their molecular docking studies on EGFR receptor results indicated that two potent compounds 11m and 11j were strongly binds to protein EGFR (PDB ID: 4hjo). It was found that the energy calculations were in good agreement with the observed IC50 values.  相似文献   

12.
The molecular modelling approach was applied to a series of nineteen curcumin analogues to find the possible PfRIO2 kinase inhibitory action. A putative active site in flexible loop (S1) of PfRIO2 kinase was explored computationally to recognize the molecular basis of ligands binding. The ligands (curcumin analogues; 3a–3s) were well accommodated in the selected active site (S1) due to their higher molecular size and length. Further all these synthesized compounds (3a–3s) were evaluated for their in vitro antimalarial activity according to the reported method. The antimalarial data showed that all these compounds to have parasiticidal activity with minimum killing concentrations (MKCs) range between 3.87 and 25.35 μM and schizonticidal activity with IC50 range between 1.48 and 23.09 μM. The compound 3p showed the most significant result with maximum schizonticidal (IC50; 1.48 ± 0.10 μM) and parasiticidal activities (MKC; 3.87 ± 0.36 μM) could be identified as promising lead for further investigations.  相似文献   

13.
Chalcones targeting neurodegenerative diseases have been known as attractive structures in drug design and discovery. In this study, phenothiazine-based chalcones as ChEs and MAOs inhibitors were designed and synthesized via base-catalyzed Claisen-Schmidt condensation, and chemical structures of the compounds were elucidated by NMRs and HRMS. Compounds 3 and 9 showed promising inhibition potency against AChE enzyme with IC50 values of 0.221 μM and 0.053 μM while compound 9 displayed remarkable inhibition potency toward MAO-B enzyme with IC50 value of 0.048 μM. Compound 9 , as a dual-target inhibitor, selectively inhibited AChE and MAO-B enzymes. This promising behavior is an advantage for the compound since MAO-B and AChE inhibition have a role in Alzheimer's disease. Fused tricyclic ring systems such as phenothiazine incorporated with chalcone moiety being multitargeting ligands may help scientists for the rational design of novel lead compounds targeting neurodegenerative illnesses.  相似文献   

14.
Two new amides, claulansamides A and B ( 1 and 2 , resp.), together with five known amides, 3 – 7 and six known quinolones, 8 – 13 , were isolated from the stems and roots of Clausena lansium. Their structures were elucidated on the basis of extensive spectroscopic methods. Their absolute configurations were determined by single‐crystal X‐ray diffraction technique, CD, and optical rotation. HPLC Chiral separation of 1 afforded two enantiomers, (+)‐ and (?)‐claulansamide A, respectively. Compounds 9, 12 , and 13 were isolated from the genus Clausena for the first time. All compounds were evaluated for their cytotoxic activities against A549, BGC‐823, and HeLa cancer cell lines. However, only 9 showed cytotoxic activity against A549 cell line with an IC50 value of 46.3 μM , and 11 against BGC‐823 and HeLa cell lines with the IC50 values of 55.0 and 14.7 μM , respectively.  相似文献   

15.
Hypoxia is the critical feature of the tumor microenvironment that is known to lead to resistance to many chemotherapeutic drugs. Six novel ruthenium(II) anthraquinone complexes were designed and synthesized; they exhibit similar or superior cytotoxicity compared to cisplatin in hypoxic HeLa, A549, and multidrug‐resistant (A549R) tumor cell lines. Their anticancer activities are related to their lipophilicity and cellular uptake; therefore, these physicochemical properties of the complexes can be changed by modifying the ligands to obtain better anticancer candidates. Complex 1 , the most potent member of the series, is highly active against hypoxic HeLa cancer cells (IC50=0.53 μM ). This complex likely has 46‐fold better activity than cisplatin (IC50=24.62 μM ) in HeLa cells. This complex tends to accumulate in the mitochondria and the nucleus of hypoxic HeLa cells. Further mechanistic studies show that complex 1 induced cell apoptosis during hypoxia through multiple pathways, including those of DNA damage, mitochondrial dysfunction, and the inhibition of DNA replication and HIF‐1α expression, making it an outstanding candidate for further in vivo studies.  相似文献   

16.
Phenylbutyrate (PB), a small aromatic fatty acid, has been known as an interesting compound with the ability of anti-proliferation and cell growth inhibition in cancer cells. In the present study, a series of PB derivatives were synthesized by Passerini multicomponent reaction and their cytotoxic activities against various human cancer cell lines including A549 (non-small cell lung cancer), MDA-MB-231 (breast cancer), and SW1116 (colon cancer) were evaluated. The results revealed that B9, displayed significantly higher in vitro cytotoxicity with IC50 of 6.65, 8.44 and 24.71 μM, against A549, MDA-MB-231 and, SW1116, respectively, in comparison to PB. The effects of these compounds on the proliferation of MCF-10A as non-tumoral breast cell line, showed good selectivity of the compounds between tumorigenic and non-tumorigenic cell lines. Moreover, B9 has indicated apoptosis-inducing activities to MDA-MB-231 cancer cell line in a dose-dependent manner. The molecular docking studies of the synthesized compounds on pyruvate dehydrogenase kinase 2 (PDK2; PDB ID: 2BU8) and histone deacetylase complex (HDAC; PDB ID: 1C3R), as the main targets of PB were applied to predict the binding sites and binding orientation of the compounds to these targets.  相似文献   

17.
In this study, a new series of aliphatic, cyclic, and heterocyclic derivatives of haemanthamine was designed and synthesized to enhance its inhibitory effect on the proliferation and viability of cancer cells. A library of haemanthamine derivatives was subjected to 10 μM single-dose cytotoxicity screening against a panel of human cell lines of various histotypes. Initial cytotoxicity evaluation of the parent haemanthamine (1) and a series of twenty-nine (230) semisynthetic analogues showed that for some of the newly formed derivatives, a certain cytotoxic effect was observed, in one case even higher than that of the parent compound. Specifically, 11-O-(4-chloro-3-nitrobenzoyl)haemanthamine (21) showed an enhanced antiproliferative effect, where the mean growth percent (GP) value was 5% compared to haemanthamine, leading to a decrease in the GP to 25%. Among ten cell lines tested, derivative 21, bearing a substituted aromatic ester bond via C-11 of haemanthamine, had excellent activity for inhibiting the growth of HeLa (IC50 = 0.2 ± 0.1 μM), A549 (IC50 = 1.7 ± 0.1 μM) and HT-29 (IC50 = 2.2 ± 0.1 μM) cells. When evaluating response kinetics, we found that 21 and haemanthamine dose- and time-dependently suppressed the proliferation of A549 cells. In contrast to haemanthamine (1), Trypan blue and lactate dehydrogenase (LDH) release assay revealed that 21 was capable of reducing the survival of A549 cells.  相似文献   

18.
A series of hydrazones 5a–i were synthesized by the condensation of hydrazides derived from dichlorophenylacetic acids with different aromatic aldehydes and ketones. Their structures were confirmed by spectroscopic data and elemental analysis. Hydrazones 5a–i were evaluated for α‐glucosidase and urease inhibition activities. Five compounds exhibited potent α‐glucosidase inhibitory potential with IC50 values 8.5 ± 0.3, 22.2 ± 0.78, 32.9 ± 1.5, 34 ± 2.4, and 170.6 ± 7.5 μM, respectively, which are many times better than that of the standard inhibitor acarbose (IC50 = 840 ± 1.73 μM). Furthermore, molecular docking study was performed to explore the binding mode in the active sites of α‐glucosidase and urease enzymes.  相似文献   

19.
A new series of 4,5-dihydro-1H-thiochromeno[4,3-d]pyrimidine derivatives have been designed and synthesized.The antitumor activities of the target compounds have been evaluated in vitro against two human cancer cell lines including A549 (human alveolar adenocarcinoma cell) and H460 (human lung cancer) by MTT assay.Most of the target compounds exhibited significant antitumor activities against A549 and H460 cancer cell lines.The most potent compound 4-(benzo[d][1,3]dioxol5-yl)-8,9-difluoro-2-(4-methylpiperazin-1-yl)-4,5-dihydro-1H-thiochromeno[4,3-d]pyrimidine (CH05) (IC50=0.44 M,3.07 M) was 2.0 and 8.4 times more active than gefitinib (IC50=0.89 M,16.81 M) against A549 and H460 cell lines,respectively.  相似文献   

20.
A series of new functionalized pyridinyl-spirooxindoles have been synthesized through three-component cyclization reactions. The selected compounds were screened for their in vitro antiproliferative activity against human lung cancer cell line A549. Among the candidate structures, compound 1o demonstrated maximum inhibitory activity against A549 cells with IC50 values of 28.38 μM. EdU (5-Ethynyl-2′- deoxyuridine, EdU) assay and cell colony formation test showed that cell proliferation of A549 cells was inhibited. In addition, Western blot analysis revealed that the phosphorylation levels of Akt, mTOR, 70S6, and S6 were down-regulated. Thus, these results indicated that 1o may inhibit the proliferation of A549 cells through inhibiting the phosphorylation levels of Akt, mTOR, 70S6, and S6. 1o may be developed as a potential antitumor agent for lung cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号