首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C(sp3)-H and O−H bond breaking steps in the oxidation of 1,4-cyclohexadiene and phenol by a Au(III)-OH complex were studied computationally. The analysis reveals that for both types of bonds the initial X−H cleavage step proceeds via concerted proton coupled electron transfer (cPCET), reflecting electron transfer from the substrate directly to the Au(III) centre and proton transfer to the Au-bound oxygen. This mechanistic picture is distinct from the analogous formal Cu(III)-OH complexes studied by the Tolman group (J. Am. Chem. Soc. 2019 , 141, 17236–17244), which proceed via hydrogen atom transfer (HAT) for C−H bonds and cPCET for O−H bonds. Hence, care should be taken when transferring concepts between Cu−OH and Au−OH species. Furthermore, the ability of Au−OH complexes to perform cPCET suggests further possibilities for one-electron chemistry at the Au centre, for which only limited examples exist.  相似文献   

2.
A detailed mechanistic study of the hydroxylation of alkane C? H bonds using H2O2 by a family of mononuclear non heme iron catalysts with the formula [FeII(CF3SO3)2(L)] is described, in which L is a tetradentate ligand containing a triazacyclononane tripod and a pyridine ring bearing different substituents at the α and γ positions, which tune the electronic or steric properties of the corresponding iron complexes. Two inequivalent cis‐labile exchangeable sites, occupied by triflate ions, complete the octahedral iron coordination sphere. The C? H hydroxylation mediated by this family of complexes takes place with retention of configuration. Oxygen atoms from water are incorporated into hydroxylated products and the extent of this incorporation depends in a systematic manner on the nature of the catalyst, and the substrate. Mechanistic probes and isotopic analyses, in combination with detailed density functional theory (DFT) calculations, provide strong evidence that C? H hydroxylation is performed by highly electrophilic [FeV(O)(OH)L] species through a concerted asynchronous mechanism, involving homolytic breakage of the C? H bond, followed by rebound of the hydroxyl ligand. The [FeV(O)(OH)L] species can exist in two tautomeric forms, differing in the position of oxo and hydroxide ligands. Isotopic‐labeling analysis shows that the relative reactivities of the two tautomeric forms are sensitively affected by the α substituent of the pyridine, and this reactivity behavior is rationalized by computational methods.  相似文献   

3.
N‐Heterocyclic carbene based pincer ligands bearing a central silyl donor, [CSiC], have been envisioned as a class of strongly σ‐donating ligands that can be used for synthesizing electron‐rich transition‐metal complexes for the activation of inert bonds. However, this type of pincer ligand and complexes thereof have remained elusive owing to their challenging synthesis. We herein describe the first synthesis of a CSiC pincer ligand scaffold through the coupling of a silyl–NHC chelate with a benzyl–NHC chelate induced by one‐electron oxidation in the coordination sphere of a cobalt complex. The monoanionic CSiC ligand stabilizes the CoI dinitrogen complex [(CSiC)Co(N2)] with an unusual coordination geometry and enables the challenging oxidative addition of E−H bonds (E=C, N, O) to CoI to form CoIII complexes. The structure and reactivity of the cobalt(I) complex are ascribed to the unique electronic properties of the CSiC pincer ligand, which provides a strong trans effect and pronounced σ‐donation.  相似文献   

4.
N‐Heterocyclic carbene based pincer ligands bearing a central silyl donor, [CSiC], have been envisioned as a class of strongly σ‐donating ligands that can be used for synthesizing electron‐rich transition‐metal complexes for the activation of inert bonds. However, this type of pincer ligand and complexes thereof have remained elusive owing to their challenging synthesis. We herein describe the first synthesis of a CSiC pincer ligand scaffold through the coupling of a silyl–NHC chelate with a benzyl–NHC chelate induced by one‐electron oxidation in the coordination sphere of a cobalt complex. The monoanionic CSiC ligand stabilizes the CoI dinitrogen complex [(CSiC)Co(N2)] with an unusual coordination geometry and enables the challenging oxidative addition of E−H bonds (E=C, N, O) to CoI to form CoIII complexes. The structure and reactivity of the cobalt(I) complex are ascribed to the unique electronic properties of the CSiC pincer ligand, which provides a strong trans effect and pronounced σ‐donation.  相似文献   

5.
Mono-N-protected amino acids (MPAAs) are increasingly common ligands in Pd-catalyzed C−H functionalization reactions. Previous studies have shown how these ligands accelerate catalytic turnover by facilitating the C−H activation step. Here, it is shown that MPAA ligands exhibit a second property commonly associated with ligand-accelerated catalysis: the ability to support catalytic turnover at substoichiometric ligand-to-metal ratios. This catalytic role of the MPAA ligand is characterized in stoichiometric C−H activation and catalytic C−H functionalization reactions. Palladacycle formation with substrates bearing carboxylate and pyridine directing groups exhibit a 50–100-fold increase in rate when only 0.05 equivalents of MPAA are present relative to PdII. These and other mechanistic data indicate that facile exchange between MPAAs and anionic ligands coordinated to PdII enables a single MPAA to support C−H activation at multiple PdII centers.  相似文献   

6.
The title racemic heterometallic dinuclear compound, [MnSn(C2H2O2S)3(H2O)5], (I), contains one main group SnIV metal centre and one transition metal MnII centre, and, by design, links the MnII centre to the building unit of the (Δ/Λ) [SnL3]2− complex anion (L is the 2‐sulfidoacetate dianion). In this cluster, the SnIV centre of the (Δ/Λ) [SnL3]2− unit is coordinated by three O atoms and three S atoms from three L ligands to form an [SnO3S3] octahedral coordination environment. The MnII centre is in an [MnO6] octahedral coordination environment, with five O atoms from five water molecules and the sixth from the μ2L ligand of the (Δ/Λ) [SnL3]2− unit. Between adjacent dinuclear molecules, there are many hydrogen‐bond interactions of O—H...O, O—H...S, C—H...O and C—H...S types. Of these, eight pairs of O—H...O hydrogen bonds fuse all the dinuclear molecules into two‐dimensional supramolecular sheets along the bc plane. Adjacent supramolecular sheets are further connected through O—H...S hydrogen bonds to give a three‐dimensional supramolecular network.  相似文献   

7.
Platinum complexes [Pt(NHC′)(NHC)][BArF] (in which NHC′ denotes a cyclometalated N-heterocyclic carbene ligand, NHC) react with primary silanes RSiH3 to afford the cyclometalated platinum(II) silyl complexes [Pt(NHC-SiHR′)(NHC)][BArF] through a process that involves the formation of C−Si and Pt−Si bonds with concomitant extrusion of H2. Low-temperature NMR studies indicate that the process proceeds through initial formation of the σ-SiH complexes [Pt(NHC′)(NHC)(HSiH2R)][BArF], which are stable at temperatures below −10 °C. At higher temperatures, activation of one Si−H bond followed by a C−Si coupling reaction generates an agostic SiH platinum hydride derivative [Pt(H)(NHC′-SiH2R)(NHC)][BArF], which undergoes a second Si−H bond activation to afford the final products. Computational modeling of the reaction mechanism indicates that the stereochemistry of the silyl/hydride ligands after the first Si−H bond cleavage dictates the nature of the products, favoring the formation of a C−Si bond over a C−H bond, in contrast to previous results obtained for tertiary silanes. Furthermore, the process involves a trans-to-cis isomerization of the NHC ligand before the second Si−H bond cleavage.  相似文献   

8.
Palladium-catalyzed directing group assisted C−H bond activation has emerged as a powerful tool in synthetic organic chemistry. However, only recently, among various directing groups, widely available carboxylate moiety is recognized as a versatile candidate for the regioselective transformations. Notably, palladium-catalyzed carboxylate directed C(sp3)−H bond activation and diverse functionalization is highly challenging and has gained huge attention for its versatile applications. Mono- and bidentate ligands have proven to be useful for accelerating the C(sp3)−H bond activation step, which helps to control reactivity and selectivity (including enantioselectivity). In this Minireview, we discuss the recent progress made in palladium-catalyzed C(sp3)−H bond functionalization reactions for the construction of C−C and C−Heteroatom bonds with the direction of free carboxylic acid.  相似文献   

9.
Oxidation of the iron(II) precursor [(L1)FeIICl2], where L1 is a tetradentate bispidine, with soluble iodosylbenzene (sPhIO) leads to the extremely reactive ferryl oxidant [(L1)(Cl)FeIV=O]+ with a cis disposition of the chlorido and oxido coligands, as observed in non-heme halogenase enzymes. Experimental data indicate that, with cyclohexane as substrate, there is selective formation of chlorocyclohexane, the halogenation being initiated by C−H abstraction and the result of a rebound of the ensuing radical to an iron-bound Cl. The time-resolved formation of the halogenation product indicates that this primarily results from sPhIO oxidation of an initially formed oxido-bridged diiron(III) resting state. The high yield of up to >70 % (stoichiometric reaction) as well as the differing reactivities of free Fe2+ and Fe3+ in comparison with [(L1)FeIICl2] indicate a high complex stability of the bispidine-iron complexes. DFT analysis shows that, due to a large driving force and small triplet-quintet gap, [(L1)(Cl)FeIV=O]+ is the most reactive small-molecule halogenase model, that the FeIII/radical rebound intermediate has a relatively long lifetime (as supported by experimentally observed cage escape), and that this intermediate has, as observed experimentally, a lower energy barrier to the halogenation than the hydroxylation product; this is shown to primarily be due to steric effects.  相似文献   

10.
The characterization of intermediates formed through the reaction of transition‐metal complexes with dioxygen (O2) is important for understanding oxidation in biological and synthetic processes. Here, the reaction of the diketiminate‐supported cobalt(I) complex LtBuCo with O2 gives a rare example of a side‐on dioxygen complex of cobalt. Structural, spectroscopic, and computational data are most consistent with its assignment as a cobalt(III)–peroxo complex. Treatment of LtBuCo(O2) with low‐valent Fe and Co diketiminate complexes affords isolable oxo species with M2O2 “diamond” cores, including the first example of a crystallographically characterized heterobimetallic bis(μ‐oxo) complex of two transition metals. The bimetallic species are capable of cleaving C−H bonds in the supporting ligands, and kinetic studies show that the Fe/Co heterobimetallic species activates C−H bonds much more rapidly than the Co/Co homobimetallic analogue. Thus heterobimetallic oxo intermediates provide a promising route for enhancing the rates of oxidation reactions.  相似文献   

11.
The use of cyclopentadienyl ligands in organometallic chemistry and catalysis is ubiquitous, mostly due to their robust spectator role. Nonetheless, increasing examples of non-innocent behaviour are being documented. Here, we provide evidence for reversible intramolecular C−H activation at one methyl terminus of C5Me5 in [(η-C5Me5)Rh(PMe3)2] to form a new Rh−H bond, a process so far restricted to early transition metals. Experimental evidence was acquired from bimetallic rhodium/gold structures in which the gold center binds either to the rhodium atom or to the activated Cp* ring. Reversibility of the C−H activation event regenerates the RhI and AuI monometallic precursors, whose cooperative reactivity towards polar E−H bonds (E=O, N), including the N−H bonds in ammonia, can be understood in terms of bimetallic frustration.  相似文献   

12.
《化学:亚洲杂志》2017,12(2):239-247
Five bis(quinolylmethyl)‐(1H ‐indolylmethyl)amine (BQIA) compounds, that is, {(quinol‐8‐yl‐CH2)2NCH2(3‐Br‐1H ‐indol‐2‐yl)} ( L1H ) and {[(8‐R3‐quinol‐2‐yl)CH2]2NCH(R2)[3‐R1‐1H ‐indol‐2‐yl]} ( L2–5H ) ( L2H : R1=Br, R2=H, R3=H; L3H : R1=Br, R2=H, R3=i Pr; L4H : R1=H, R2=CH3, R3=i Pr; L5H : R1=H, R2=n Bu, R3=i Pr) were synthesized and used to prepare calcium complexes. The reactions of L1–5H with silylamido calcium precursors (Ca[N(SiMe2R)2]2(THF)2, R=Me or H) at room temperature gave heteroleptic products ( L1, 2 )CaN(SiMe3)2 ( 1 , 2 ), ( L3, 4 )CaN(SiHMe2)2 ( 3 a , 4 a ) and homoleptic complexes ( L3, 5 )2Ca ( D3 , D5 ). NMR and X‐ray analyses proved that these calcium complexes were stabilized through Ca⋅⋅⋅C−Si, Ca⋅⋅⋅H−Si or Ca⋅⋅⋅H−C agostic interactions. Unexpectedly, calcium complexes (( L3–5 )CaN(SiMe3)2) bearing more sterically encumbered ligands of the same type were extremely unstable and underwent C−N bond cleavage processes as a consequence of intramolecular C−H bond activation, leading to the exclusive formation of (E )‐1,2‐bis(8‐isopropylquinol‐2‐yl)ethane.  相似文献   

13.
The saturated trihydride IrH33-P,O,P-[xant(PiPr2)2]} ( 1 ; xant(PiPr2)2=9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene) activates the B−H bond of two molecules of pinacolborane (HBpin) to give H2, the hydride-boryl derivatives IrH2(Bpin){κ3-P,O,P-[xant(PiPr2)2]} ( 2 ) and IrH(Bpin)23-P,O,P-[xant(PiPr2)2]} ( 3 ) in a sequential manner. Complex 3 activates a C−H bond of two molecules of benzene to form PhBpin and regenerates 2 and 1 , also in a sequential manner. Thus, complexes 1 , 2 , and 3 define two cycles for the catalytic direct C−H borylation of arenes with HBpin, which have dihydride 2 as a common intermediate. C−H bond activation of the arenes is the rate-determining step of both cycles, as the C−H oxidative addition to 3 is faster than to 2 . The results from a kinetic study of the reactions of 1 and 2 with HBpin support a cooperative function of the hydride ligands in the B−H bond activation. The addition of the boron atom of the borane to a hydride facilitates the coordination of the B−H bond through the formation of κ1- and κ2-dihydrideborate intermediates.  相似文献   

14.
Ab initio MP2/aug’-cc-pVTZ calculations have been carried out to investigate H2CO : PXH2 pnicogen-bonded complexes and HCO2H : PXH2 complexes that are stabilized by pnicogen bonds and hydrogen bonds, with X=NC, F, Cl, CN, OH, CCH, CH3, and H. The binding energies of these complexes exhibit a second-order dependence on the O−P distance. DFT-SAPT binding energies correlate linearly with MP2 binding energies. The HCO2H : PXH2 complexes are stabilized by both a pnicogen bond and a hydrogen bond, resulting in greater binding energies for the HCO2H : PXH2 complexes compared to H2CO : PXH2. Neither the O−P distance across the pnicogen bond nor the O−P distance across the hydrogen bond correlates with the binding energies of these complexes. The nonlinearity of the hydrogen bonds suggests that they are relatively weak bonds, except for complexes in which the substituent X is either CH3 or H. The pnicogen bond is the more important stabilizing interaction in the HCO2H : PXH2 complexes except when the substituent X is a more electropositive group. EOM-CCSD spin-spin coupling constants 1pJ(O−P) across pnicogen bonds in H2CO:PXH2 and HCO2H : PXH2 complexes increase as the O−P distance decreases, and exhibit a second order dependence on that distance. There is no correlation between 2hJ(O−P) and the O−P distance across the hydrogen bond in the HCO2H : PXH2 complexes. 2hJ(O−P) coupling constants for complexes with X=CH3 and H have much greater absolute values than anticipated from their O−P distances.  相似文献   

15.
Oxidative addition is the standard process for single-bond activation in transition metal catalysis and it is known to operate for many types of bonds, but challenging σ-bonds e. g. C(sp3)−F and C(sp3)−C(sp3) bonds are the exceptions in this respect. This short review aims at demonstrating how both α- and β-eliminations may be better options for activation of unstrained C−F and C−C single bonds. Selected examples of such eliminations are presented with a mechanistic focus indicating how unstrained and unactivated C−C and C−F bonds can be broken by employing α- and β-eliminations in transition metal hydrocarbyl ligands. Our examples show that the reaction barrier in β-eliminations is controlled by the s-character of the participating bonds where a higher s-character gives a better overlap in the multi-center transition state thereby increasing the reactivity; still β-aryl eliminations can compete with the classical β-hydrogen eliminations in certain cases.  相似文献   

16.
The phosphanoxy-substituted phosphaalkene bearing the P=C−O−P skeleton can be prepared from diphosphene Mes*P=PMes* (Mes*=2,4,6-tBu3C6H2), and their use for catalysis is of interest. In this paper, complexation of the phosphanoxy-substituted phosphaalkenes with gold are investigated, and the catalytic activity of the mono- and bis(chlorogold) complexes are subsequently evaluated. Reaction of the P=C−O−P compound with (tht)AuCl (tht=tetrahydrothiophene) showed dominant coordination on the sp3 phosphorus, and complete coordination on the sp2 phosphorus required removal of tetrahydrothiophene. Atoms In Molecules (AIM) analysis based on the X-ray structure of the mono(chlorogold) complex indicated a pseudo coordinating interaction between the gold center and the P=C unit. The bis(chlorogold) complexes displayed conformational isomerism, and catalyzed the cycloisomerization/alkoxycyclization of 1,6-enyne and for hydration of terminal alkyne without activation treatment. Even the mono(chlorogold) complexes catalyzed the alkoxycyclization reactions without a silver co-catalyst, indicating that the alcohols were effective in activating the AuCl unit.  相似文献   

17.
A systematic quantum chemical study of the bonding in d6-transition-metal complexes, containing phosphine-stabilized, main-group-element fragments, (R3P)2E, as ligands (E=AlH, BH, CH+, C), is reported. By using energy decomposition analysis, it is demonstrated that a strong M−E bond is accompanied by weak P−E bonds, and vice versa. Although the Al−M bond is, for example, found to be very strong, the weak Al−P bond suggests that the corresponding metal complexes will not be stable towards phosphine dissociation. The interaction energies for the boron(I)-based ligand are lower, but still higher than those for two-carbon-based ligands. For neutral ligands, electrostatic interactions are the dominating contributions to metal–ligand bonding, whereas for the cationic ligand a significant destabilization, with weak orbital and even weaker electrostatic metal–ligand interactions, is observed. Finally, for iron(II) complexes, it is demonstrated that different reactivity patterns are expected for the four donor groups: the experimentally observed reversible E−H reductive elimination of the borylene-based ligand (E=BH) exhibits significantly higher barriers for the protonated carbodiphosphorane (CDP) ligand (E=CH) and would proceed through different intermediates and transition states. For aluminum, such reaction pathways are not feasible (E=AlH). Moreover, it is demonstrated that the metal hydrido complexes with CDP ligands might not be stable towards reduction and isomerization to a protonated CDP ligand and a reduced metal center.  相似文献   

18.
Two new tetranuclear NiII complexes, [Ni4(L1)2(N3)4(MeOH)2]·CH3COCH3 (1) and [Ni4(L2)2(N3)4(MeOH)2]·4CH3COCH3 (2) , were synthesized using NiCl2·6H2O, NaN3, and asymmetric salamo‐based ligands H2L1 and H2L2, respectively. The structural characterization was made by elemental analyses, infrared (IR) and ultraviolet‐visible (UV‐vis) spectra, and X‐ray diffraction analyses. The results of X‐ray diffraction analyses show that the NiII atoms in complexes 1 and 2 are distorted octahedral geometries. Interestingly, the degree of distortion of the ligands in complexes 1 and 2 is different, which indicates that the interaction of NiII ions on different ligands is different. Meanwhile, the investigation of molecular packing by employing the Hirshfeld surface analysis exhibits that the percentages of C–H/H–C, O–H/H–O, and H–H/H–H contacts of the complex 1 (or 2 ) are calculated to be 17.7%, 7.9%, and 53.7% (or 18.8%, 13.8%, and 52.5%), respectively, where the H–H/H–H contacts have the characteristics of strong contacts whereas the O–H/H–O hydrogen bonds are considerably weak, and the studies on fluorescence properties further confirm the NiII atoms have different binding abilities to the different ligands.  相似文献   

19.
An iridium-catalyzed selective ortho-monoiodination of benzoic acids with two equivalent C−H bonds is presented. A wide range of electron-rich and electron-poor substrates undergo the reaction under mild conditions, with >20:1 mono/di selectivity. Importantly, the C−H iodination occurs selectively ortho to the carboxylic acid moiety in substrates bearing competing coordinating directing groups. The reaction is performed at room temperature and no inert atmosphere or exclusion of moisture is required. Mechanistic investigations revealed a substrate-dependent reversible C−H activation/protodemetalation step, a substrate-dependent turnover-limiting step, and the crucial role of the AgI additive in the deactivation of the iodination product towards further reaction.  相似文献   

20.
The first 16 valence electron [bis(NHC)](silylene)Ni0 complex 1 , [(TMSL)ClSi:→Ni(NHC)2], bearing the acyclic amido-chlorosilylene (TMSL)ClSi: (TMSL=N(SiMe3)Dipp; Dipp=2,6-Pri2C6H4) and two NHC ligands (N-heterocyclic carbene=:C[(Pri)NC(Me)]2) was synthesized in high yield and structurally characterized. Compound 1 is capable of facile dihydrogen activation under ambient conditions to give the corresponding HSi-NiH complex 2 . Most notably, 1 reacts with catechol borane to afford the unprecedented hydroborylene-coordinated (chloro)(silyl)nickel(II) complex 3 , {[cat(TMSL)Si](Cl)Ni←:BH(NHC)2}, via the cleavage of two B−O bonds and simultaneous formation of two Si−O bonds. The mechanism for the formation of 3 was rationalized by means of DFT calculations, which highlight the powerful synergistic effects of the Si:→Ni moiety in the breaking of incredibly strong B−O bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号