首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Oil-in-water emulsions are usually formed during oil production and treatment. Before being discarded, such dispersions should be treated. In order to improve the oil–water separation process using physical processes (decantation, flotation, centrifugation, etc.) the particle size of the disperse phase should be increased. This may be achieved through flocculation, which consists in the agglomeration of various particles or drops, using, as flocculating agents, high molecular weight hydrophilic macromolecules. A few studies have been carried out on the flocculation of finely divided oil drops in brine with the aid of generally ionic polyelectrolytes. This work shows the results obtained using nonionic polymers as flocculants. Commercial samples of poly(ethylene oxide-b-propylene oxide) and poly(vinyl alcohol) were evaluated through flocculation–flotation tests as well as the drop size distribution. The performance of such additives as flocculants for oil–water dispersions is related to their structure, composition, molecular weight and hydrophilic–lipophilic balance. The composition of the produced water is also an important parameter when choosing the features of the flocculant additive.  相似文献   

2.
Major problems related to enrichment of products with phytosterols are high melting temperature, chalky taste and low solubility in water phase. Dispersion of phytosterols in an emulsion was optimized using a mixture design with four components (phytosterols, emulsifier, soy oil, and water). It was found that the particle size of the dispersed phase decreased with the increase in emulsifier concentration. The appearance viscosity was increased with decreasing particle size. The stability of these emulsions could be correlated with the decrease in surface tension and particle size by using oil and emulsifier as components of oil phase.  相似文献   

3.
Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) nanospheres and oily nanocapsules were prepared by emulsification–diffusion technique. Controlled particle sizes were obtained employing binary mixtures of solvents (chloroform:ethanol) in the organic phase. Ethanol was chosen because of its dipole–dipole interaction with chloroform and its hydrogen bond with water. The smallest particles (from 253 to 493 nm) were obtained using a mixture of solvents composed of 70% ethanol and 30% chloroform (v/v) in the organic phase, while the largest particles (from 896 to 1568 nm) were obtained using chloroform exclusively. Independently of the organic phase composition, the nanoparticles showed unimodal distributions. Optical microscopy showed that the size of the primary emulsion droplets of the nanosphere formulations decreased with increasing ethanol concentrations in the organic phase. A simple empirical equation was developed correlating the nanoparticle diameters with the surface tension gradient coefficient multiplied by the ethanol molar concentration in the organic phase. The strategy showed that the control of the nanoparticle diameters, using emulsification–diffusion technique, could be achieved by adjusting the surface tension of the organic phase.  相似文献   

4.
The system vinyl acetate (VAc)/poly(dimethylsiloxane) diglycidylether (PDMS-DGE) is a typical example of two monomers where both components are polymerizable in a “one-pot” procedure by two distinct reaction mechanisms. Non-aqueous dispersions (NAD) are obtained in a first step by free-radical polymerization of the dispersed VAc-PVAc phase. The study of the reaction kinetics has shown that the polymerization rate is mainly influenced by the partition coefficient of VAc between both phases in presence. The colloidal characteristics of the NAD, such as particle size, stability and viscosity were examined in function of monomer and initiator concentrations. Preliminary UV curing tests of the PDMS-DGE phase in the presence of a cationic photoinitiator have shown that PVAc/PDMS two-phase coatings can be obtained, without any solvent emission.  相似文献   

5.
Quantitative theory of the particle-interface interaction across a nonpolar medium is developed. We consider a spherical dielectric particle (phase 1), which is immersed in a nonpolar medium (phase 2), near its boundary with a third dielectric medium (phase 3). The interaction originates from electric charges at the particle surface (e.g., the surface of a silica particle immersed in oil). The theoretical problem is solved exactly, in terms of Legendre polynomials, for arbitrary values of the dielectric constants of the three phases. As a result, expressions for calculating the interaction force and energy are derived. These expressions generalize the known theory of the electrostatic image force (acing on point charges) to the case of particles that have finite size and uniform surface charge density. For typical parameter values (silica or glass particles immersed in tetradecane), the image-force interaction becomes significant for particles of radius R > 30 nm. At fixed relative particle-to-interface distance, the force increases with the cube of the particle radius. In general, this is a strong and long-range interaction. For micrometer-sized particles, the interaction energy could be on the order of 10(5) k(B)T at close contact, and, in addition, the interaction range could be about 10(5) particle radii. The sign of the interaction depends on the difference between the dielectric constants of phases 2 and 3. When phase 3 has a smaller dielectric constant (e.g., air), the interface repels the particle. In contrast, when phase 3 has a greater dielectric constant (e.g., water), the interaction is attractive. Especially, water drops attract charged hydrophobic particles dispersed in the oily phase, and thus favor the formation of reverse particle-stabilized (Pickering) emulsions. The particle-interface interaction across the oily phase is insensitive to the concentration of electrolyte in the third, aqueous phase.  相似文献   

6.
Polypropyleneglycol (PPG) was used as a dispersion medium for the preparation of microspheres (MS) consisting of starch, gelatin, whey protein or dextran. Aqueous solutions of the polymers were dispersed in PPG at various initial temperatures and then the systems were cooled to 0.5 degrees C to allow water in the dispersed phase to dissolve in PPG. The particle size of the starch-MS was dependent on the initial temperature of PPG in the preparation process. There were two different processes for particle generation in the procedure. One of them was via the formation of a temporary emulsion during the early phase of dispersion of the aqueous polymer solution into PPG. The other was via the stable emulsion in which the aqueous polymer solution was dispersed in water-saturated PPG. The particle size generated in the former process was dependent on the initial temperature: a high temperature gave large particles but a low temperature gave small particles, while that in the latter process was temperature-independent. This preparation method for MS will be useful for the formulation of heat-sensitive material, such as protein-containing drugs.  相似文献   

7.
以煤油为连续相,水为分散相,Span-80/Tween-80为复配乳化剂,过硫酸铵为引发剂,丙烯酰胺、丙烯酸和氨水为原料,采用反相乳液聚合法合成了丙烯酰胺-丙烯酸铵共聚物絮凝剂.考察了乳化剂种类及用量、引发剂浓度、单体浓度、EDTA用量、聚合温度等对共聚物特性黏数的影响.确定了最佳实验条件,利用FTIR对样品进行了表征.  相似文献   

8.
The blending of PLA with poly(butylene-adipate-co-terephthalate) (PBAT) is a promising strategy to achieve a toughened multiphase material. The blends ductility could be further improved through reactive compatibilization, i.e. inducing the formation of comb PLA-PBAT copolymers during the melt blending. In the present work a non-selective strategy was adopted which consisted in the use of a peroxide, 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane. The phase morphology development and the final properties (torque, fluidity in the melt, tensile behaviour, thermal and dynamical-mechanical features) of the blends were studied as a function of the peroxide concentration. The elongation at break was improved up to a maximum value thanks to this approach and a corresponding minimum was observed in the value of the dispersed phase diameter. A structural characterization of the macromolecules formed during the reactive process was attempted by using size exclusion chromatography of the blends and comparison with the pure polymers obtained by processing in the presence of the peroxide.  相似文献   

9.
Three component percolative W/O microemulsions were studied by differential scanning calorimetry. Water-AOT-Decane, D2O-AOT-Decane, Water-AOT-Isooctane and Water-Ca(AOT)2-Decane systems were analyzed. Thus by changing, in the order, the dispersed phase, the dispersing medium, and by modifying the interphase region. The thermal history of the samples was monitored by a suitable thermal program. Following the latter, first order phase transitions associated with the freezing and/or melting of the two massive phases were obtained, as well as the higher order phase transition associated with the percolation process. From the melting spectra an estimate of the amount of water bound to the hydrophilic groups of the AOT as well as of that of oil bound to the hydrophobic surfactant tails was obtained. The latter result shows a difference in the behaviour of the continuous oily phase at the O/W interphase. From the freezing spectra, the percolative character of the microemulsion was evidenced by the exotherms associated with the freezing of the water phase. This work was supported by M.U.R.S. T. and I.N.F.M.  相似文献   

10.
以双酚A型聚碳酸酯(PC)为基体、苯乙烯-丙烯腈共聚物(SAN)为散射体,通过熔融共混方法制备了同时具备高透光率和高雾度的高散射聚碳酸酯光散射片,研究了SAN含量对光散射片微观结构和光散射性能的影响,发现透光率和雾度同时随着散射体含量增加而提高的现象.研究结果表明,当SAN含量低于30%时,分散相为球形颗粒,颗粒的平均粒径随着SAN含量的增加而增加,而颗粒的数量浓度则随之减小,这使得其透光率和雾度均随着SAN含量的增加而增加,当SAN含量为30%时,透光率和雾度达到最大值,分别为89.1%和91.7%.并结合Mie散射理论解释说明了透光率和雾度同时随着散射体含量的增加而提高的现象.但当SAN含量的进一步增加,分散相颗粒尺寸已远大于光波的波长,不再适用于Mie散射理论,且部分不再呈球形颗粒,使得PC片的透光率和雾度略有降低.  相似文献   

11.
Emulsions of equal volumes of a cyclic silicone oil and water stabilized by fumed silica nanoparticles alone can be inverted from oil-in-water (o/w) to water-in-oil (w/o) by simply increasing the concentration of particles. The phenomenon is found to be crucially dependent both on the inherent hydrophobicity of the particles and on their initial location. Inversion only occurs in systems with particles of intermediate hydrophobicity when dispersed in oil; emulsions prepared from the same particles but initially dispersed in water remain o/w at all particle concentrations. The stability and drop size distributions in the different emulsions are compared. Various hypotheses are put forward and argued to explain this novel inversion route including adsorption of oil onto particle surfaces, hysteresis of contact angle affecting particle wettability in situ, and the structure of particle dispersions in oil or water prior to emulsification inferred from rheology and light scattering measurements. We propose that the tendency for particles to behave more hydrophobically at higher concentrations in oil is due to the reduction in the effective silanol content at their surfaces as a result of gel formation via silanol-silanol hydrogen bonds. In water, solvation of particle surfaces prevents this from occurring and particles behave as hydrophilic ones at all concentrations. A concentration-induced change in particle wettability is thus advanced.  相似文献   

12.
Relatively uniform-sized biodegradable poly(lactide) (PLA) microcapsules with various sizes were successfully prepared by combining a glass membrane emulsification technique and water-in-oil-in-water (w1/o/w2) double emulsion-solvent evaporation method. A water phase was used as the internal water phase, a mixture solvent of dichloromethane (DCM) and toluene dissolving PLA and Arlacel 83 was used as the oil phase (o). These two solutions were emulsified by a homogenizer to form a w1/o primary emulsion. The primary emulsion was permeated through the uniform pores of a glass membrane into the external water phase by the pressure of nitrogen gas to form the uniform w1/o/w2 double emulsion droplets. Then, the solid polymer microcapsules were obtained by simply evaporating solvent. The influence of process parameters on the size distribution of PLA microcapsules was investigated, with an emphasis on the effect of oil-soluble emulsifier. A unique phenomenon was found that a large part of emulsifier could adsorb on the interface of internal water phase and oil phase, which suppressed its adsorption on the surface of glass membrane, and led to the successful preparation of uniform-sized double emulsion. Finally, by optimizing the process parameters, PLA microcapsules with various sizes having coefficient of variation (CV) value under 14.0% were obtained. Recombinant human insulin (rhI), as a model protein, was encapsulated into the microcapsules with difference sizes, and its encapsulation efficiency and cumulative release were investigated. The result suggested that the release behavior could be simply adjusted just by changing precisely the diameters of microcapsule, benefited from the membrane emulsification technique.  相似文献   

13.
Nanosized hydrogel particles prepared through inverse microemulsion polymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid, using the combination of an oil soluble emulsifier (SPAN80) with a water soluble emulsifier (TWEEN 80), and precise determination of HLB range related to the formation of stable single phase microemulsions.

The effect of crosslink density, water phase to oil phase ratio, and the hydrophilic-lipophilic balance (HLB) value on polymerization rate, particle size, and swelling ratio were investigated. It found that polymerization rate and particle size are strongly dependent on the water phase to oil phase ratio. Hydrogel samples prepared using oil soluble and water soluble initiators and the results showed that the initiator type had a great influence on monomer conversion and particle size. Effect of pH on equilibrium swelling of hydrogels was studied by dynamic light scattering and hydrogels showed pH-independent swelling behavior in a broad range of pH values. We also reported and discussed the crosslink density distribution in nanogels prepared by inverse microemulsion polymerization.  相似文献   

14.
This study reports the compatibility of the biobased polymers poly(3-hydroxybutyrate-co-3- -hydroxyhexanoate) (PHBH) and poly(lactic acid) (PLA), as well as the effect of the addition of a reactive epoxy compatibilizer (REC) to the PHBH/PLA blend. The chemical structure, thermal performance, surface morphology and mechanical properties of the blends were measured using fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic thermo-mechanical analysis, thermogravimetric analysis, scanning electron microscopy, and impact and tensile testing.PHBH and PLA were partially compatible, and a PHBH/PLA mass ratio of 80:20 was selected for evaluation with an REC. The REC decreased the difference between the glass-transition temperatures of PHBH and PLA, decreased the particle size of the dispersed phase of the PHBH/PLA blend and produced uniform particle distribution. Moreover, the REC improved the elongation at break and impact strength of the PHBH/PLA blend. These results show that the addition of an REC improves the compatibility of PHBH and PLA.  相似文献   

15.
The stability of oil-in-water emulsions prepared using dextran, a natural polysaccharide, hydrophobically substituted with phenoxy groups, was studied. The evolution of the emulsion droplet size was investigated as a function of polymer concentration (Cp=0.2 to 1% w/w in a water phase) and the degree of phenoxy substitution (tau=4.2 to 15.7%). For the highest tau values, emulsions, which presented submicrometer droplets, were stable over more than 4 months at room temperature. The most substituted polymers clearly showed a better efficiency to lower the surface tension at the oil/water interface. DexP did not induce real viscosification of the continuous phase. The linearity of the particle volume variation with time, and the invariability of the volume distribution function, proved that Ostwald ripening was the main destabilization mechanism of the phenoxy dextran emulsions. The nature of the oil dispersed phase drastically affected the behavior of emulsions. While the emulsions prepared with n-dodecane presented a particle growth with time, only few size variations occurred when n-hexadecane was used. Furthermore, small ratios of n-hexadecane in n-dodecane phase reduced the particle growth due to the lower solubility and lower diffusion coefficient in water of n-hexadecane, which acted as a ripening inhibitor.  相似文献   

16.
UV-curable self-emulsified polyurethane acrylates were synthesized in acetone and then dispersed in water. The effect of acetone’s ratio on the emulsification of the polyurethane acrylate was investigated. With a proper amount of acetone as a solvent, stable emulsion with small particle size and narrow particle size distribution was successfully produced and the viscosity during the process of emulsification was greatly reduced. However, stable emulsion could not be obtained when the acetone level was larger than a critical value. A ternary phase diagram was mapped. It was found that only those systems experiencing a phase inversion process lead to a stable emulsion. The carboxylic content is another important factor influencing the properties of emulsion and the process of emulsification. The effect of the carboxylic content on the emulsification was also studied in the experiment. There was another critical carboxylic content for stability. Stable emulsions with small drop sizes less than 50 nm were produced.  相似文献   

17.
Incorporation of water-soluble drugs in PLGA microspheres   总被引:1,自引:0,他引:1  
Poly(lactide-co-glycolide) (PLGA) microspheres containing blue dextran, as a model of water-soluble drugs, were prepared from w1/o/w2 emulsions by using a microhomogenizer and a solvent evaporation method. Effects of preparation conditions, such as, concentration of poly(vinyl alcohol) (PVA) in w2 phase, viscosity of inner soluble water phase, volume ratio of oil phase to w1 phase in primary emulsion, PLGA concentration in oil phase, and molecular weight or composition of PLGA, upon the properties of PLGA microspheres containing water-soluble drugs were examined. Concentration of poly(vinyl alcohol) (PVA), the dispersant dissolved in w2 phase of secondary emulsion did not show any effects on the final particle size. On the other hand, volume ratio of oil phase to water one in primary emulsion affected the final particle size, which seemed to be related to the local PLGA concentration in w1/o emulsions. That is, the particle size increased as the volume ratio of w1 phase against oil phase, w1/o (v/v), increased. The loading efficiency, however, was not affected by the volume ratio of w1/o (v/v), but affected by blue dextran concentration in w1 phase. Higher loading efficiency was observed in PLGA microspheres prepared from w1 phase containing lower concentration of blue dextran. Blue dextran solution (inner water phase) with the lower viscosity may result in the lower leakage ratio of blue dextran during the preparation procedure. Increases in concentration and molecular weight of PLGA made particle size larger.  相似文献   

18.
A series of microemulsions, both W/O and O/W, based on nonionic surfactants of the form (NP(EO)n), were prepared using the titration method. Mixing a constant weight of surfactant with a constant volume of the dispersed phase and an initial volume of continuous phase produces an emulsion, which is titrated to clarity with another surfactant (cosurfactant). Plotting (a) the volume of cosurfactant necessary to transform an emulsion into a microemulsion containing a fixed volume of dispersed phase and constant weight of surfactant versus (b) different initial continuous-phase volumes yields a straight line. Extrapolating from experimentally determined values for the cosurfactant volume to the value corresponding to a zero-volume continuous phase allows the determination of the surfactant molar composition and the average number of ethylene oxides (EO) per nonylphenol adsorbed at the interface. Using a surfactant with the same number of ethylene oxides yields a single-surfactant microemulsion. Measurement of surfactants transmittance in the oil and water phases demonstrates that microemulsification occurs when the surfactant interfacial film is equally soluble in the two phases. Surface pressure measurements reveal that oil penetration impedes formation of O/W microemulsions with n-tetradecane or n-hexadecane as dispersed phase. Conductance, particle size, and transmittance measurements show that above a certain dispersed-phase volume percolation of the microemulsion occurs.  相似文献   

19.
快速准确分析处理过程中含油污泥的含水率和含油率有助于现场评价其原油回收效率和优化处理工艺参数。以Dean-Stark装置测定的含油污泥样品的含水率和含油率作为参考值,利用低场核磁共振结合偏最小二乘回归法建立了样品含水率和含油率校正集模型,考察了回波衰减曲线和横向弛豫时间T2曲线对校正集模型性能的影响。结果表明,采用前者建立的校正集模型性能优于后者;在此基础上,建立了31个样品的含水率和含油率通用校正集模型,其含水率和含油率模型的决定系数(R2)分别为0.965 7和0.978 5,校正标准差(RMSECV)分别为2.73%和2.22%。利用3个不同批次采集的HZ-OS样品对该模型进行验证,对于含水率和含油率模型,其验证集R2分别为0.914 1和0.924 7,预测标准差(RMSEP)分别为1.85%和2.04%,与RMSECV值比较接近,说明该模型的稳定性较好,可用于准确分析样品的含水率和含油率。  相似文献   

20.
Electroacoustics was used to study SDS-stabilized sunflower oil-in-water emulsions, with oil volume fractions between 2% and 50%. The dynamic mobility of the oil droplets was measured; the size and electric charge on the drops were calculated using formulas derived for dilute and concentrated systems and the results were compared. The relation derived for concentrated systems appears to be valid up to at least 50% provided the particles remain within the size range of the instrument, which shifts upward with rising concentration. Conductivity and pH had little effect on particle properties in the range studied; higher oil volume fraction (φ) had a substantial influence on the particle size produced in a homogenizer, but not on the zeta potential. Both median size and spread decreased with increases in φ. In contrast, both size and charge were hardly affected at volume fractions less than 10%. Dilution of the emulsion with a surfactant solution of the same composition as the water phase changed neither the particle size nor the zeta potential. The temperature of the emulsification process had a significant influence on the particle size but the zeta potential was hardly affected. Surfactant concentration had some effect on size at low volume fractions but not for φ>10%. The electroacoustic method hence could be applied to analyze both the dilute and the concentrated emulsions directly. Copyright 2001 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号