首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 789 毫秒
1.
The self-assembly induced by the photocontrolled/living radical polymerization mediated by 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl was performed for amphiphilic poly(methacrylic acid)-block-poly(alkyl methacrylate-random-methacrylic acid) containing ethyl, n-propyl, and n-butyl methacrylates in order to control the morphology based on the hydrophobic-hydrophilic balance. The morphology transformation from films to spherical vesicles via the transition was well-controlled by adjusting the ratio of the alkyl methacrylate unit to the methacrylic acid in the hydrophobic random copolymer block. The copolymers formed the respective morphologies at different ratios dependent on the alkyl chain length of the methacrylates; the ratio for the formation of the respective morphologies decreased as the alkyl chain length increased. The hydrophobic energy estimation of these copolymers demonstrated that the respective morphologies had definite hydrophobic energies independent of the alkyl chain length, indicating that the morphologies were determined only by the hydrophobic magnitude of the random copolymer block.  相似文献   

2.
Gradient elution of synthetic polymers has been studied both theoretically and experimentally using normal and reversed-phase HPLC systems. An accurate equation describing the gradient elution of polymer-homologous series in the context of continuous random-flight model of a flexible polymer chain interacting with attractive surface of the porous material has been derived and experimentally verified against a series of narrow polystyrene standards. Both the theory and the experiment predict the existence of molar mass-independent gradient elution at critical point of adsorption (CPA). The extension of the theory to synthetic copolymers predicts the existence of the CPA for statistical copolymers and describes its dependence on chemical composition and microstructure (blockiness) of the polymer chains. One of the important theoretical conclusions is that blockiness always increases the retention, so that blockier polymer chains elute later than their more random counterparts with the same chemical composition. This prediction has been confirmed experimentally using block and statistical styrene-methylmethacrylate copolymers. Block copolymers do not have CPA and always elute between critical points of the corresponding homopolymers. The retention depends on the polymer molar mass and increases with the length of the blocks from a stronger absorbing monomer. These findings provide theoretical and experimental bases for separation of statistical and block copolymers by chemical composition and microstructure of polymer chains.  相似文献   

3.
Self assembly of block copolymers has gained considerable attention because of its potential use in various areas such as medical and biomedical applications, nanotechnology, and electronics. Herein, we present the synthesis and characterization of amphiphilic block‐random copolymers with a covalently incorporated pH‐sensitive dye, namely eosin. Ring opening metathesis polymerization was chosen for the preparation of well defined block copolymers and block‐random copolymers using a modified “2nd Generation Grubbs” initiator. The self assembly behavior of the block‐random copolymers in solution was studied by dynamic light scattering and small angle X‐ray scattering (SAXS). The influence of dye incorporation on the result of the self assembly process in methanol and ethanol was investigated and a subtle interplay of the nature of the selective solvent, the chain‐length of the block copolymer and the position of the dye within the polymer chain was established. Structural investigations using SAXS revealed a spherical shape and a core‐shell structure of exemplary block and block‐random copolymer micelles. UV–vis absorption and photoluminescence measurements revealed similar optical properties for polymer micelles in methanol compared to polymer solutions in THF. The pH‐sensitive behavior of the eosin dye was preserved within the micelles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 401–413, 2008  相似文献   

4.
The effect of copolymer sequence distribution and stiffness on the adsorption–desorption transition and configuration of an adsorbed polymer chain is examined by Monte Carlo methods. Trends in the adsorption–desorption transition temperatures show that the transition temperature of the block and alternating copolymers are determined by entropic factors while the copolymers with a random sequence distribution (block-ran, random, or alt-ran, defined below) are controlled by enthalpic considerations. Analysis of the conformation of adsorbed chains and monomer density profiles suggests that utilizing an adsorbed rigid copolymer may be useful at tuning the properties of an interface in a multiphase material. A block copolymer can be utilized to affect substantial surface coverage and extensive expansion away from the surface. Additionally, an increase in the rigidity of the diblock chain will improve the expansion of the chain in all three dimensions. Alternatively, random copolymer structures offer a chain that will adopt a flatter adsorbed configuration that offers more efficient surface coverage. In this case, the expansion of the copolymer along the surface can be enhanced by increasing the stiffness of the chain with little or no change in the expansion away from the interface.  相似文献   

5.
The morphology of giant vesicles composed of amphiphilic poly(methacrylic acid)-block-poly(methyl methacrylate-random-methacrylic acid) random block copolymers, PMAA-b-P(MMA-r-MAA), was effectively controlled by manipulating the hydrophobic-hydrophilic balance of the P(MMA-r-MAA) blocks through the self-assembly induced by the nitroxide-mediated photo-controlled/living radical polymerization in an aqueous methanol solution. The morphology was transformed from spherical vesicles into fibers and finally into membranes as the molar ratio of the MAA units in the hydrophobic P(MMA-r-MAA) block increased at a constant block length. The membrane morphology reverted to spherical vesicles by exchanging the MMA units with more hydrophobic isopropyl methacrylate units at a constant MAA ratio. These morphology transitions were accounted for by the change in the critical packing shape of the random block copolymers based on the variation in the extent of the hydrophobic block chains.  相似文献   

6.
A series of copolymers composed of two monomer units having a polar phosphorylcholine group and an apolar fluorocarbon group with a controlled monomer unit sequence were synthesized by a reversible addition‐fragmentation chain transfer (RAFT) living radical polymerization method. 2‐Methacryloyloxyethyl phosphorylcholine (MPC) and 2,2,2‐trifluoroethyl methacrylate (TFEMA) were selected as the monomers, because they have disparate polarity. Furthermore, to investigate the influence of the monomer unit sequence in a polymer chain on the phase‐separated structure in the bulk and surface structure, copolymers having a continuous change in the monomer unit composition along the polymer chain (gradient copolymer) were synthesized, as well as random and block copolymers. The analysis of instantaneous composition revealed a continuous change in the monomer unit composition in the gradient copolymer and the statistical monomer unit sequence in the random copolymer. Thermal analysis assumed that the gradient sequence of the monomer unit would make the phase‐separated structure in the bulk ambiguous, while the well‐defined and monodispersive block sequence would undergo the distinct phase‐separation due to the extreme difference in the polarity of the component monomer units. The preliminary surface characterization of the synthesized polymers indicated the monomer unit sequence in the polymer chain would much influence on the surface structure. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6073–6083, 2005  相似文献   

7.
Formation of homo- and copolymers of various structures (random and block) based on tert-butyl acrylate and n-butyl acrylate via polymerization mediated by trithiocarbonates as reversible addition-fragmentation chain-transfer agents has been studied. The process is found to proceed according to a three-stage mechanism. As a result, it is possible to synthesize symmetric triblock copolymers with the use of polymer trithiocarbonates; the polymer reversible addition-fragmentation chain transfer agent predetermines the composition and molecular mass of end blocks, the composition of the monomer mixture determines the structure of the central block, and the concentration of the agent and the conversion of the monomers define its molecular-mass characteristics. The modification of polymerization products gives rise to amphiphilic copolymers.  相似文献   

8.
The thermal degradation of random and block copolymers of terephthaloyl trans-2,5-dimethylpiperazine/isophthaloyl trans-2,5-dimethylpiperazine were investigated in terms of rates, activation energies, degradation products, and electrical properties. The rates of degradation and the nature of the volatile degradation products indicate that both random and block copolymers follow a nearly random free-radical type of cleavage in vacuum with activation energies between 59 and 61 kcal/mole. In the temperature range 390=440°C, the block copolymers are significantly more stable in a vacuum (the rates of degradation are two to four times slower) than the random copolymers. In contrast to the random copolymers, the block copolymers showed only slight frequency dependence of their dielectric constants and dissipation factors between 0.1 and 100 kcps.  相似文献   

9.
Two types of miscible poly(ε-caprolactone-co-ε-caprolactam) copolymers were studied. In both cases catalyzed hydrolytic ring-opening polymerization was employed. For the first type, the comonomers were added simultaneously to obtain random copolymers. For the second type, the comonomers were added sequentially to obtain block copolymers. Successive self-nucleation and annealing (SSA) and isothermal crystallization studies were performed to both types of copolymers. The SSA results reflect the differences in molecular microstructure: block versus random copolymers. In a wide composition range only the polycaprolactam sequences were capable of crystallization in the random copolymers. Avrami indexes of approximately 3-4 were obtained corresponding to the spherulitic crystallization of these units within the copolymers. The block copolymer samples experienced a relatively small reduction of crystallization kinetics with composition, and this was attributed to the dilution effect caused by the miscible non-crystalline polycaprolactone units. On the other hand, for the random copolymers, the rate of crystallization strongly increased with polycaprolactam content while the energy barrier for secondary nucleation decreased exponentially. The comparison between miscible block and random copolymers provides a unique opportunity to distinguish the dilution effect of the polycaprolactone units (a moderate effect) on the isothermal crystallization and melting of the polyamide phase from the molecular microstructural effect in the random copolymers case (a dramatically strong effect), where the polycaprolactam sequences are interrupted statistically by polycaprolactone sequences.  相似文献   

10.
Block and random PEGylated copolymers of poly(ethylene glycol) methacrylate (PEGMA) and polystyrene (PS) were synthesized with a controlled polydispersity using an atom transfer radical polymerization method and varying molar mass ratios of PS/PEGMA. Two types of PEGylated copolymers were self-assembly coated onto the surface of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes for enhancing biofouling resistance. It was found that the adsorption capacities of random copolymers on PVDF membranes were all higher than those of block copolymers. However, the specific and overall protein resistance of bovine serum albumin (BSA) on PVDF membranes coated with block copolymers was much higher than that with random copolymers. The increase in styrene content in copolymer increased the amount of polymer coating on the membrane, and the increase in PEGMA content enhanced the protein resistance of membranes. The optimum PS/PEGMA ratio was found to be close to 2 for the best resistance of protein adsorption and bacterial adhesion on the PEGylated diblock copolymer-coated membranes. The PVDF membrane coated with such a copolymer owned excellent biofouling resistance to BSA, humic acid, negatively surface charged bacteria E. coli, and positively surface charged bacteria S. maltophilia.  相似文献   

11.
Block copolymers comprising thermosensitive poly(N-isopropylacrylamide) (PNIPAM) and hydrophobic poly(n-butyl acrylate) (PBA) blocks, were synthesized using the reversible addition-fragmentation chain transfer polymerization (RAFT), their thermosensitive behavior was studied by ultraviolet spectrophotometer (UV) and dynamic light scattering (DLS). The lower critical solution temperature (LCST) was strongly correlated to the hydrophobic/hydrophilic ratio of the copolymers. Their micellization and self-assembly behavior in dilute aqueous solution were studied by surface tension (SFT), DLS and TEM. The resulting block copolymers reversibly formed or deformed micellar assemblies during their LCSTs. The critical micelle concentration (CMC) was controlled by the composition of PBA and PNIPAM, indicating the successful formation of the block copolymers.  相似文献   

12.
Alternating and random copolymers in dilute solution are investigated by means of Monte Carlo simulations on a cubic lattice. Each molecule consists of an equal number of A and B segments, either randomly distributed along the chain or forming an alternating sequence. The energy parameters chosen represent selective solvent conditions (the solvent is a good one for monomers of type A and a θ-solvent for B; between A and B repulsive interactions are operative). Comparison with di- and triblock copolymers of equal overall composition reveals that the behaviour of random or alternating copolymers (subject to the same selective solvent) is quite different. Their properties rather resemble those of homopolymers in a solvent of intermediate quality. The absolute chain dimensions (e.g. the mean square radius of gyration, 〈s2〉, and the mean square end-to-end distance, 〈h2〉) of random and alternating copolymers as well as their scaling exponents are significantly larger than those of block copolymers. The ratio between 〈h2〉 and 〈s2〉 as well as the shape of the polymer (expressed by the asphericity δ) are similar to those of athermal polymers indicating that there is no pronounced selectivity of the solvent. In contrast to block copolymers, these parameters exhibit no significant chain-length dependence. The number of the various types of polymer-polymer contacts (A-A, B-B and A-B) is almost independent of the type of contact at least for the solvent conditions investigated. This is in contrast to block copolymers where A-B contacts are widely suppressed and where the number of B-B contacts is approximately twice as high as that of A-A contacts.  相似文献   

13.
The goal of the investigation presented here is the development of extremely hydrophobic materials based on polysulfone that can be applied, for instance, as fouling-resistant membrane materials. The concept used is the addition of semifluorinated polymers to polysulfone in suitable blend compositions. The influence of molecular parameters like chain structure of the semifluorinated polymer (segmented block copolymers, random copolymers) and segment molecular weight on the state of phase separation in the bulk and its influence on the surface properties have been systematically examined. It could be shown that segmented block copolymers with semifluorinated polyester segments with intermediate segment molecular weight are more suitable in blends with polysulfone than random polysulfone copolymers having semifluorinated side chains with respect to form homogeneous thin films (coatings) with highly non-wetting properties.  相似文献   

14.
In this study, the adsorption of amphiphilic poly(ethylene oxide)-block-polylactide (mPEO-PLA) copolymers from a selective solvent onto a polylactide surface was studied as a method of polylactide surface modification and its effect on nonspecific protein adsorption was evaluated. A series of well defined mPEO-PLA copolymers was prepared to investigate the effect of copolymer composition on the resulting PEO chain density and on the surface resistance to protein adsorption. The copolymers contained PEO blocks with molecular weights ranging between 5600 and 23,800 and with 16-47 wt% of PLA. The adsorption of both the copolymers and bovine serum albumin was quantified by attenuated total reflection FTIR spectroscopy (ATR-FTIR). In addition to the adsorbed copolymer amount, its actual composition was determined. The PEO chain density on the surface was found to decrease with the molecular weight of the PEO block and to increase with the molecular weight of the PLA block. The adsorbed copolymers displayed the ability to reduce protein adsorption. The maximum reduction within the tested series (by 80%) was achieved with the copolymer containing PEO of MW 5600 and a PLA block of the same MW.  相似文献   

15.
A new approach is described to tailor properties of polyketones based on the controlled modification of the block structure by varying the polymerization process. Ethylene-propylene-CO (ECOPCO) terblock copolymers with similar composition but different chain microstructures have been synthesized using either preset polymerization (PSP) or pulsed-feed polymerization (PFP), respectively. Whereas by PSP an ABC-triblock structure is obtained, the PFP results in [AB]n-multiblock structure. In this paper we investigate the influence of the chain microstructure on the mechanical behavior and the surface properties.SFM phase images display a phase-separated bulk morphology where triblock polymers due to the larger block lengths form coarser structures than the multiblock samples. If the ECO content is above 50%, partially crystalline lamellar structures can be found, which in case of the multiblock sample form a continuous network of lamellar-like ECO rich domains. All ECOPCO terpolymers reveal elastomeric behavior with an elastic recovery of at least 82% but tensile strength and elongation vary with the block length of the chain microstructures. Differences in elasticity are explained by the formation of different amounts of cross-links consisting of blocks of parallel-aligned ECO chain segments or crystalline lamellae. It can be shown that the surface morphology differs from bulk morphology, mainly by the point that no distinct phase separation appears but ECO rich domains can be detected. Surface tension measurements enable to correlate the surface energy with surface composition and surface morphology.  相似文献   

16.
The microscopic Polymer Reference Interaction Site Model theory is employed to study, for the first time, the effective interactions, spatial organization, and miscibility of dilute spherical nanoparticles in non‐microphase separating, chemically heterogeneous, compositionally symmetric AB multiblock copolymer melts of varying monomer sequence or architecture. The dependence of nanoparticle wettability on copolymer sequence and chemistry results in interparticle potentials‐of‐mean force that are qualitatively different from homopolymers. An important prediction is the ability to improve nanoparticle dispersion via judicious choice of block length and monomer adsorption‐strengths which control both local surface segregation and chain connectivity induced packing constraints and frustration. The degree of dispersion also depends strongly on nanoparticle diameter relative to the block contour length. Small particles in copolymers with longer block lengths experience a more homopolymer‐like environment which renders them relatively insensitive to copolymer chemical heterogeneity and hinders dispersion. Larger particles (sufficiently larger than the monomer diameter) in copolymers of relatively short block lengths provide better dispersion than either a homopolymer or random copolymer. The theory also predicts a novel widening of the miscibility window for large particles upon increasing the overall molecular weight of copolymers composed of relatively long blocks. The influence of a positive chi‐parameter in the pure copolymer melt is briefly studied. Quantitative application to fullerenes in specific copolymers of experimental interest is performed, and miscibility predictions are made. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1098–1111  相似文献   

17.
Water-soluble, amphiphilic diblock copolymers were synthesized by reversible addition fragmentation chain transfer polymerization. They consist of poly(butyl acrylate) as hydrophobic block with a low glass transition temperature and three different nonionic water-soluble blocks, namely, the classical hydrophilic block poly(dimethylacrylamide), the strongly hydrophilic poly(acryloyloxyethyl methylsulfoxide), and the thermally sensitive poly(N-acryloylpyrrolidine). Aqueous micellar solutions of the block copolymers were prepared and characterized by static and dynamic light scattering analysis (DLS and SLS). No critical micelle concentration could be detected. The micellization was thermodynamically favored, although kinetically slow, exhibiting a marked dependence on the preparation conditions. The polymers formed micelles with a hydrodynamic diameter from 20 to 100 nm, which were stable upon dilution. The micellar size was correlated with the composition of the block copolymers and their overall molar mass. The micelles formed with the two most hydrophilic blocks were particularly stable upon temperature cycles, whereas the thermally sensitive poly(N-acryloylpyrrolidine) block showed a temperature-induced precipitation. According to combined SLS and DLS analysis, the micelles exhibited an elongated shape such as rods or worms. It should be noted that the block copolymers with the most hydrophilic poly(sulfoxide) block formed inverse micelles in certain organic solvents.  相似文献   

18.
Spontaneous formation and efficient stabilization of gold nanoparticles with an average diameter of 7 approximately 20 nm from hydrogen tetrachloroaureate(III) hydrate (HAuCl4.3H2O) were achieved in air-saturated aqueous poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer solutions at ambient temperature in the absence of any other reducing agent. The particle formation mechanism is considered here on the basis of the block copolymer concentration dependence of absorption spectra, the time dependence (kinetics) of AuCl4- reduction, and the block copolymer concentration dependence of particle size. The effects of block copolymer characteristics such as molecular weight (MW), PEO block length, PPO block length, and critical micelle concentration (cmc) are explored by examining several PEO-PPO-PEO block copolymers. Our observations suggest that the formation of gold nanoparticles from AuCl4- comprises three main steps: (1) reduction of metal ions by block copolymer in solution, (2) absorption of block copolymer on gold clusters and reduction of metal ions on the surface of these gold clusters, and (3) growth of metal particles stabilized by block copolymers. While both PEO and PPO blocks contribute to the AuCl4- reduction (step 1), the PEO contribution appears to be dominant. In step 2, the adsorption of block copolymers on the surface of gold clusters takes place because of the amphiphilic character of the block copolymer (hydrophobicity of PPO). The much higher efficiency of particle formation attained in the PEO-PPO-PEO block copolymer systems as compared to PEO homopolymer systems can be attributed to the adsorption and growth processes (steps 2 and 3) facilitated by the block copolymers. The size of the gold nanoparticles produced is dictated by the above mechanism; the size increases with increasing reaction activity induced by the block copolymer overall molecular weight and is limited by adsorption due to the amphiphilic character of the block copolymers.  相似文献   

19.
The deformation and fracture behaviour of symmetric and asymmetric styrene-b-(styrene-random-butadiene)-b-styrene (S-SB-S) triblock copolymers with variations in their molecular architectures in terms of their outer PS block and the random SB middle block composition ratios have been investigated using essential work of fracture approach based on post yield fracture mechanics concept. The present investigations on crack resistance behaviour of these S-(S/B)-S triblock copolymers where effective interaction parameter (χeff) is systematically varied through the variation of block compositions and architecture is in continuation to our earlier communicated short article highlighting the phase behaviour-morphology and mechanical property interrelation. The crack initiation and propagation behaviours are correlated to morphology and dynamic mechanical properties as obtained from TEM, SAXS and DMA measurements. The influence of interaction parameter (χ-parameter) space which has been manipulated through the variation of block compositions has clearly manifested in their morphologies and in their mechanical properties. Further the kinetic aspects of fracture mechanical response have also been investigated where all the materials have clearly revealed block composition dependence. SEM analysis was carried out to understand the fracture modes prior to failure.  相似文献   

20.
A reversible addition-fragmentation chain transfer (RAFT) agent, the methyl-2-(n-butyltrithiocarbonyl)propanoate (MBTTCP) has shown to be efficient in controlling the polymerization of N,N-dimethylacrylamide (DMA), N-isopropylacrylamide (NIPAM) and N-acryloyloxysuccinimide (NAS). Two different strategies have been studied to synthesize block copolymers based on one PNIPAN block and the other a random copolymer of DMA and NAS. When a PNIPAM trithiocarbonate-terminated is used as macromolecular chain transfer agent for the polymerization of a mixture of NAS and DMA, well-defined P(NIPAM-b-(NAS-co-DMA)) block copolymers were obtained with a low polydispersity index. These thermoresponsive block copolymers dissolved in aqueous solution at 25 °C and self-assembled into micelles when the temperature was raised above the LCST of the PNIPAM block. The micelle shell containing NAS units was further crosslinked using a primary diamine in order to get shell-crosslinked nanoparticles. Upon cooling below the LCST of PNIPAM this structure may easily reorganize to form nanoparticles with a water filled hydrophilic core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号