首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stable electroactive thin film of rhein has been investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical impedance spectroscopy of the electrodeposited film derived from rhein indicated the electrode reaction was kinetically controlled in the region of higher frequency, the charge transfer resistance was 2.6×103 Ω cm2 and capacitance value was 13.2 μF cm2 . The electrodeposited film derived from rhein exhibited a good electrocatalytic activity for myoglobin (Mb) reduction. In 0.30 mol dm−3 H2SO4solution, the catalysis currents were proportional to the concentrations of Mb over the range of 1.5×10−7–1.3×10−5 mol dm−3. The detection limit is 1.0×10−7 mol dm−3 (S/N=3). The relative standard deviation is 4.8% for eight successive determinations of 5.0×10−7 mol dm−3 Mb.  相似文献   

2.
A simple and new reagentless phenolic compound biosensor was constructed with tyrosinase immobilized in the gelatine matrix cross-linked with formaldehyde. The morphologies of gelatine and gelatine/tryosinase were characterized by SEM. The tyrosinase retains its bioactivity when being immobilized by the gelatine film. Phenolic compounds were determined by the direct reduction of biocatalytically liberated quinone at -0.1 V vs SCE. The process parameters for the fabrication of the enzyme electrode were studied. Optimization of the experimental parameters has been performed with regard to pH, operating potential, temperature and storage stability. This biosensor exhibits a fast amperometric response to phenolic compounds. The linear range for catechol, phenol, and p-Cresol determination was from 5×10−8 to 1.4×10−4 M, 5×10−8 to 7.1×10−5 M, and 1×10−7 to 3.6×10−5 M, with a detection limit of 2.1×10−8 M, 1.5×10−8 M, and 7.1×10−8 M, respectively. The enzyme electrode retained ca.77% of its activity after 7 days of storage at 4°C in a dry state. The proposed sensor presented good repeatability, evaluated in terms of relative standard deviation (R.S.D.=8.6%) for eight different biosensors and was applied for determination in water sample. The recovery for the sample was from 99.0% to 99.8%.  相似文献   

3.
Aminylferrocene is successfully immobilized on nanosized gold colloid particles associated with a 1,4-benzenedimethanethiol monolayer on a gold electrode surface and characterized by cyclic voltammograms and electrochemical impedance spectroscopy. In a pH 7.0 phosphate buffer solution, the formal potential (E 0’) of Fc is 0.432 V (SCE), and the apparent surface electron-transfer rate constant is 0.89 s. The immobilized Fc gives an excellent electrocatalytic response to the terbutaline oxidation. The catalytic-current response of differential pulse voltammograms increases linearly with the terbutaline concentration from 1.75 × 10−7 to 5.62 × 10−4 mol/l. The detection limit is 2.30 × 10−8 mol/l. The determination of terbutaline in a tablet dosage is satisfactory. The method is simple, quick, and sensitive. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 8, pp. 969–974. The text was submitted by the authors in English.  相似文献   

4.
Direct electrochemistry of hemoglobin (Hb) immobilized on the dihexadecyl hydrogen phosphate (DHP)/single-wall carbon nanotubes (SWNTs) film modified Au electrode is investigated. The immobilized Hb displays a couple of stable and well-defined redox peaks, whose formal potential (E 0) is −0.434 V (SCE) in a phosphate buffer solution of pH 7.0. The formal potential of the heme Fe(III)/Fe(II) couple shifts negatively linearly with increased pH with a slope of −42.3 mV/pH, denoting that one electron transfer accompanies single proton transportation. Both SWNTs and DHP can accelerate the electron transfer between Hb and the electrode. Using DHP/Hb/SWNTs-film-modified Au electrode, the interaction between Hb and taxol is investigated. The voltammetric response of Hb decreases with increasing concentration of taxol. The peak currents decreases proportionally to the taxol concentration at 1.4 × 10−5 to 1.3 × 10−4 M, the linear regression equation being Δi (A) = 2.9603 − 0.4225 ctaxol (M), with a correlation coefficient (r) 0.9985, and the detection limit 6.95 × 10−6 M (signal-to-noise ratio of three). Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 7, pp. 801–807. The text was submitted by the authors in English.  相似文献   

5.
A novel hydrogen peroxide (H2O2) biosensor was developed by immobilizing hemoglobin on the gold colloid modified electrochemical pretreated glassy carbon electrode (PGCE) via the bridging of an ethylenediamine monolayer. This biosensor was characterized by UV-vis reflection spectroscopy (UV-vis), electrochemical impendence spectroscopy (EIS) and cyclic voltammetry (CV). The immobilized Hb exhibited excellent electrocatalytic activity for hydrogen peroxide. The Michaelis–Menten constant (K m) was 3.6 mM. The currents were proportional to the H2O2 concentration from 2.6 × 10−7 to 7.0 × 10−3 M, and the detection limit was as low as 1.0 × 10−7 M (S/N = 3).  相似文献   

6.
The effect of glycine, α-alanine, and asparagine acid on the kinetics of anode processes occurring for copper in alkali electrolytes is studied. The experiments are performed in a background solution of 1 × 10−2 M NaOH (pH 12). The concentrations of glycine and α-alanine are varied in the range of 1 × 10−6-1 × 10−1 M, and the concentration of asparagine acid is varied in the range of 1 × 10−5-1 × 10−3 M. All amino acids used in this work have been found to stimulate anode oxidation of passivated copper, initiating local activation (LA) of the metal. Depending on the nature of amino acids, this effect occurs in various concentration ranges: for glycine and α-alanine, it takes place at c= 5 × 10−3-2 × 10−2 M, while for asparagine acid, at c = 1 × 10−5−1 × 10−3 M. In addition to this general regularity, several individual peculiarities have been revealed: in the systems containing a monobasic amino acid additive, local activation occurs at E = 0.10–0.20 V, while in the presence of a dibasic amino acid, the local activation is observed at two potentials, E LA1 = 0.20–0.30 V and = E LA2 = 0.80–0.90 V, separated by the repassivation region.  相似文献   

7.
A simple method was used to fabricate flavin adenine dinucleotide (FAD)/NiOx nanocomposite on the surface of glassy carbon (GC) electrode. Cyclic voltammetry technique was applied for deposition nickel oxide nanostructures onto GC surface. Owing to its high biocompatibility and large surface area of nickel oxide nanomaterials with immersing the GC/NiOx-modified electrode into FAD solution for a short period of time, 10–140 s, a stable thin layer of the FAD molecules immobilized onto electrode surface. The FAD/NiOx films exhibited a pair of well-defined, stable, and nearly reversible CV peaks at wide pH range (2–10). The formal potential of adsorbed FAD onto nickel oxide nanoparticles film, E o′ vs. Ag/AgCl reference electrode is −0.44 V in pH 7 buffer solutions was similar to dissolved FAD and changed linearly with a slope of 58.6 mV/pH in the pH range 2–10. The surface coverage and heterogeneous electron transfer rate constant (k s ) of FAD immobilized on NiOx film glassy carbon electrode are 4.66 × 10−11 mol cm−2 and 63 ± 0.1 s−1, indicating the high loading ability of the nickel oxide nanoparticles and great facilitation of the electron transfer between FAD and nickel oxide nanoparticles. FAD/NiOx nanocomposite-modified GC electrode shows excellent electrocatalytic activity toward S2O82− reduction at reduced overpotential. Furthermore, rotated modified electrode illustrates good analytical performance for amperometric detection of S2O82−. Under optimized condition, the concentration calibration range, detection limit, and sensitivity were 3 μM–1.5 mM, 0.38 μM and 16.6 nA/μM, respectively.  相似文献   

8.
A highly sensitive hydroxylamine (HA) electrochemical sensor is developed based on electrodeposition of gold nanoparticles with diameter of 8 nm on the pre-synthesized polypyrrole matrix and formed gold nanoparticles/polypyrrole (GNPs/PPy) composite on glassy carbon electrode. The electrochemical behavior and electrocatalytic activity of the composite-modified electrode are investigated. The GNPs/PPy composite exhibits a distinctly higher electrocatalytic activity for the oxidation of HA than GNPs with twofold enhancement of peak current. The enhanced electrocatalytic activity is attributed to the synergic effect of the highly dispersed gold metal particles and PPy matrix. The overall numbers of electrons involved in HA oxidation, the electron transfer coefficient, catalytic rate constant, and diffusion coefficient are investigated by chronoamperometry. The sensor presents two wide linear ranges of 4.5 × 10−7–1.2 × 10−3 M and 1.2 × 10−3–19 × 10−3 M with the detection limit of 4.5 × 10−8 M (s/n = 3). In addition, the proposed electrode shows excellent sensitivity, selectivity, reproducibility, and stability properties.  相似文献   

9.
The influence of malathion and its four main degradation products found in irradiated solutions (malaoxon, isomalathion, diethyl maleate and O,O-dimethyl phosphate) on acetylcholinesterase (AChE) of free and immobilized bovine erythrocytes was investigated. The concentration-dependent responses to malathion and related organophosphates, malaoxon and isomalathion, of both AChE bioassays used were obtained. The IC 50 values for free and immobilized AChE (3.7 ± 0.2) × 10−4 M/(1.6 ± 0.1) × 10−4, (2.4 ± 0.3) × 10−6/(3.4 ± 0.1) × 10−6 M, and (3.2 ± 0.3) × 10−6 M/(2.7 ± 0.2) × 10−6 M were obtained in the presence of malathion, malaoxon and isomalathion, respectively. However, diethyl maleate inhibited AChE activity at concentrations ≥ 10 mM, while O,O-dimethyl phosphate did not noticeably affect enzyme activity at all investigated concentrations. The relation between the structure of the compounds and their ability to inhibit enzyme activity was discussed. The article is published in the original.  相似文献   

10.
A glassy carbon electrode was modified with electropolymerized film of diphenylamine sulfonic acid (DPASA). Electropolymerization was performed by cyclic voltammetry in 0.1 M KCl solution. The modified electrode showed an excellent electrocatalytic effect towards oxidation of dopamine (DA) and ascorbic acid (AA). Electrostatic interaction between the negatively charged poly(DPASA) film and either cationic DA species or anionic AA species favorably contributed to the redox response of DA and AA. Anodic peaks of DA and AA in their mixture were well separated by ca 168 and −11.8 mV. The proposed modified electrode was utilized for selective determination of dopamine in the concentration range of 5.0 × 10t7–2.0 × 10−5 M in the presence of high concentration of ascorbic acid. Detection limit was 6.5 × 10−9 M.  相似文献   

11.
A new H2O2 biosensor was fabricated on the basis of nanocomposite films of hemoglobin (Hb), silver nanoparticles (AgNPs), and multiwalled carbon nanotubes (MWNTs)–chitosan (Chit) dispersed solution immobilized on glassy carbon electrode (GCE). The immobilized Hb displayed a pair of well-defined and reversible redox peaks with a formal potential (E θ′) of −22.5 mV in 0.1 M pH 7.0 phosphate buffer solution. The apparent heterogeneous electron transfer rate constants (k s) in the Chit–MWNTs film was evaluated as 2.58 s−1 according to Laviron’s equation. The surface concentration (Γ*) of the electroactive Hb in the Chit–MWNTs film was estimated to be (2.48 ± 0.25) × 10−9 mol cm−2. Meanwhile, the Chit–MWNTs/Hb/AgNPs/GCE demonstrated excellently electrocatalytical ability to H2O2. Its apparent Michaelis–Menten constant (K Mapp) for H2O2 was 0.0032 mM, showing a good affinity. Under optimal conditions, the biosensors could be used for the determination of H2O2 ranging from 6.25 × 10−6 to 9.30 × 10−5 mol L−1 with a detection limit of 3.47 × 10−7 mol L−1 (S/N = 3). Furthermore, the biosensor possessed rapid response to H2O2 and good stability, selectivity, and reproducibility.  相似文献   

12.
In this paper, a novel method for detection of formaldehyde (HCHO), based on its electrocatalytic oxidation of HCHO at a nickel electrode, is reported. The mechanism of electrocatalytic oxidation and quantification of HCHO have been investigated by cyclic and staircase voltammetry, respectively. The electrocatalytic oxidation peak potential of HCHO is at about 475 mV vs. Ag/AgCl electrode; the peak current responds proportionally to concentrations of HCHO in alkaline solution. The linear range of detection is from 46.8 to 1640 μg/L (1.56 × 10−6 to 5.46 × 10−5 M) with a correlation coefficient of 0.996 and a detection limit of 23.4 μg/L (7.80 × 10−7 M). The relative standard deviation (RSD) is less than 6% (n = 5), and the recovery is in the range 98–106% for real samples. The result is consistent with that from the spectrophotometry. The text was submitted by the authors in English.  相似文献   

13.
The electrooxidation of D-penicillamine (D-PA) has been studied in the presence of potassium iodide in various buffered aqueous solutions (4.00 ≤ pH ≤ 9.00) at the surface of glassy carbon electrode using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. It has been found that under optimum pH (pH 5.00) in cyclic voltammetry, the electrooxidation of D-PA in the presence of potassium iodide as a homogeneous mediator occurred at a potential about 220 mV less positive than that in absence of potassium iodide at the surface of glassy carbon electrode. The homogeneous electrocatalytic oxidation current wave of D-penicillamine was linearly dependent on the D-PA concentration and a linear calibration curve was obtained in the ranges 3.0 × 10−5−1.5 × 10−3 M and 9.0 × 10−6−1.2 × 10−4 M of D-PA with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (2σ) were determined as 3.0 × 10−5 and 3.5 × 10−6 M with CV and DPV, respectively. This method was also used for voltammetric determination of D-PA in pharmaceutical preparation by standard addition method.  相似文献   

14.
A glassy carbon electrode (GCE) modified with the film composed of chitosan incorporating cetylpyridine bromide is constructed and used to determine uric acid (UA) and ascorbic acid (AA) by differential pulse voltammetry (DPV). This modified electrode shows efficient electrocatalytic activity and fairly selective separation for oxidation of AA and UA in mixture solution. UA is catalyzed by this modified electrode in phosphate buffer solution (pH 4.0) with a decrease of 80 mV, while AA is catalyzed with a decrease of 200 mV in overpotential compared to GCE, and the peak separation of oxidation between AA and UA is 260 mV, which is large enough to allow the determination of one in presence of the other. Under the optimum conditions, the anodic peak currents (I pa) of DPV are proportional to the concentration of UA in the range of 2.0 × 10−6 to 6.0 × 10−4 M, with the detection limit of 5.0 × 10−7 M at a signal-to-noise ratio of 3 (S/N = 3) and to that of AA in the range of 4.0 × 10−6 to 1.0 × 10−3 M, with the detection limit of 8.0 × 10−7 M (S/N = 3).  相似文献   

15.
A new p-tetra-butyl calix [6] arene-L-Histidine chemically modified glassy carbon electrode (BCH/GCE) has been proposed for simultaneous investigation and determination of epinephrine (Ep) and serotonin (5-HT) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). In potassium dihydrogen phosphate-borax (PDPB) buffer solution (pH 5.8), the anodic peaks of Ep and 5-HT were observed at 0.27 and 0.45 V, respectively, with E up to 180 mV. The peak currents on the DP voltammogram are in a linear relationship with the concentrations of Ep in the range of 1.0 × 10−6−1.30 × 10−4 M in the presence of 1.0 × 10−4 M 5-HT. A linear relationship was similarly found for 5-HT in the range 1.0 × 10−6− 1.40 × 10−4 M in the presence of 1.0 × 10−4 M Ep. It is found that Ep and 5-HT could be simultaneously determined with good sensitivity in the presence of 1.0 × 10−3 M ascorbic acid (AA). The developed method has been applied to the determination of Ep and 5-HT in synthetic samples with satisfactory results. The text was submitted by the authors in English.  相似文献   

16.
The electrocatalytic oxidation of quinine sulfate (QS) was investigated at a glassy carbon electrode, modified by a gel containing multiwall carbon nanotubes (MWCNTs) and room-temperature ionic liquid of 1-Butyl-3-methylimidazolium hexafluorophate (BMIMPF6) in 0.10 M of phosphate buffer solution (PBS, pH 6.8). It was found that an irreversible anodic oxidation peak of QS with E pa as 0.99 V appeared at MWCNTs-RTIL/glassy carbon electrode (GCE). The electrode reaction process was a diffusion-controlled one and the electrochemical oxidation involved two electrons transferring and two protons participation. Furthermore, the charge-transfer coefficient (α), diffusion coefficient (D), and electrode reaction rate constant (k f) of QS were found to be 0.87, 7.89 × 10−3 cm2⋅s−1 and 3.43 × 10−2 s−1, respectively. Under optimized conditions, linear calibration curves were obtained over the QS concentration range 3.0 × 10−6 to 1.0 × 10−4 M by square wave voltammetry, and the detection limit was found to be 0.44 μM based on the signal-to-noise ratio of 3. In addition, the novel MWCNTs-RTIL/GCE was characterized by the electrochemical impedance spectroscopy and the proposed method has been successfully applied in the electrochemical quantitative determination of quinine content in commercial injection samples and the determination results could meet the requirement.  相似文献   

17.
Lactate oxidase from the species Pediococcus is immobilized in a conducting polymer film on the surface of planar electrodes modified with Prussian blue. Polypyrrole ammonium is electropolymerized to obtain the conducting polymer. The analytical characteristics of the resulting biosensor are as follows: a sensitivity of 190 ± 14 mA M−1 cm−2, a linear dynamic range of 5 × 10−7 to 5 × l0−4 M, and high operational stability. The applicability of a lactate biosensor for food quality control (for example, quality control of kvass) is shown. Effective and inexpensive biosensors for lactate analysis may be applied in clinical diagnostics, sports medicine, quality control of food and farm products, as well as for biotechnology processes.  相似文献   

18.
The electrocatalytic oxidation of aspirin and acetaminophen on nanoparticles of cobalt hydroxide electrodeposited on the surface of a glassy carbon electrode in alkaline solution was investigated. The process of oxidation and the kinetics have been investigated using cyclic voltammetry, chronoamperometry, and steady-state polarization measurements. Voltammetric studies have indicated that in the presence of drugs, the anodic peak current of low valence cobalt species increases, followed by a decrease in the corresponding cathodic current. This indicates that drugs are oxidized on the redox mediator which is immobilized on the electrode surface via an electrocatalytic mechanism. With the use of Laviron’s equation, the values of anodic and cathodic electron-transfer coefficients and charge-transfer rate constant for the immobilized redox species were determined as α s,a = 0.72, α s,c = 0.30, and k s = 0.22 s−1. The rate constant, the electron transfer coefficient, and the diffusion coefficient involved in the electrocatalytic oxidation of drugs were reported. It was shown that by using the modified electrode, aspirin and acetaminophen can be determined by amperometric technique with detection limits of 1.88 × 10−6 and 1.83 × 10−6 M, respectively. By analyzing the content of acetaminophen and aspirin in bulk forms using chronoamperometric and amperometric techniques, the analytical utility of the modified electrode was achieved. The method was also proven to be valid for analyzing these drugs in urine samples.  相似文献   

19.
A carbon ionic liquid electrode (CILE) was fabricated by mixing N-butylpyridinium hexafluoro-phosphate (BPPF 6 ) with graphite powder and further used for the investigation on the electrochemical behavior of L-tryptophan (Trp). The fabricated CILE showed good conductivity, inherent electrocatalytic ability and strong promotion to the electron transfer of Trp. On the CILE, an irreversible oxidation peak appeared at 0.948 V (vs. saturated calomel reference electrode). For 5.0 × 10−5 M Trp the oxidation peak current increased about 5 times and the oxidation peak potential decreased on 0.092 V compared to carbon paste electrode. The results indicated that an electrocatalytic reaction occurred on CILE. The conditions for the electrochemical detection were optimized and the electrochemical parameters of Trp on CILE were carefully investigated. Under the selected conditions, the oxidation peak current showed linear relationship with Trp concentration in the range of 8.0 × 10−6 ∼1.0 × 10−3 M for cyclic voltammetry and the detection limit was estimated as 4.8 × 10−6 M (3σ). The interferences of other amino acids or metal ions on the determination were tested and the proposed method was successfully applied to the synthetic sample analysis.  相似文献   

20.
Direct electron transfer of myoglobin (Mb) was achieved by its direct immobilization on carbon ionic liquid electrode (CILE) with a conductive hydrophobic ionic liquid, 1‐butyl pyridinium hexaflourophosphate ([BuPy][PF6]) as binder for the first time. A pair of well‐defined, quasi‐reversible redox peaks was observed for Mb/CILE resulting from Mb redox of heme Fe(III)/Fe(II) redox couple in 0.1 M phosphate buffer solution (pH 7.0) with oxidation potential of ?0.277 V, reduction potential of ?0.388 V, the formal potential E°′ (E°′=(Epa+Epc)/2) at ?0.332 V and the peak‐to‐peak potential separation of 0.111 V at 0.5 V/s. The average surface coverage of the electroactive Mb immobilized on the electrode surface was calculated as 1.06±0.03×10?9 mol cm?2. Mb retained its bioactivity on modified electrode and showed excellent electrocatalytic activity towards the reduction of H2O2. The cathodic peak current of Mb was linear to H2O2 concentration in the range from 6.0 μM to 160 μM with a detection limit of 2.0 μM (S/N=3). The apparent Michaelis–Menten constant (K and the electron transfer rate constant (ks) were estimated to be 140±1 μM and 2.8±0.1 s?1, respectively. The biosensor achieved the direct electrochemistry of Mb on CILE without the help of any supporting film or any electron mediator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号