首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 152 毫秒
1.
Two symmetric tetrapodal ligands L1–2 and one asymmetric tetrapodal ligand L3 based on 4,5‐diazafluoren have been synthesized and characterized. Ligands L1–2 formed by the condensation of pentaerythrityl tetratosylate with 4,5‐diazafluoren‐9‐oxime and 9‐(4‐hydroxy)phenylimino‐4,5‐diazafluorene, respectively. L3 was prepared by two steps, 9‐(4‐hydroxy)phenylimino‐4,5‐diazafluorene reacted with pentaerythrityl tetratosylate affording 1,1′,1"‐tris[(4,5‐diazafluoren‐9‐ylimino)phenoxymethyl]‐1"′‐(p‐tosyloxymethyl)‐methane, which reacted with 4,5‐diazafluoren‐9‐oxime affording the asymmetric ligand L3. Three tetranuclear RuII complexes [(bpy)8L1–3Ru4](PF6)8 (bpy = bipyridine) were obtained by the reaction of Ru(bpy)2Cl2 · 2H2O with ligands L1–3. Spectroscopic studies of these complexes exhibit metal‐to‐ligand charge transfer absorptions at 440–445 nm and emissions at 575–579 nm. The electrochemical behaviors of these complexes are consistent with one RuII‐based oxidation couple and three ligand‐centered reduction couples.  相似文献   

2.
Three tripodal ligands H3L1–3 containing imidazole rings were synthesized by the reaction of 1,10‐phenanthroline‐5,6‐dione with 1,3,5‐tris[(3‐formylphenoxy)methyl]benzene, 1,3,5‐tris[(3‐formylphenoxy)methyl]‐2,4,6‐trimethylbenzene, and 2,2′,2"‐tris[(3‐formylphenoxy)ethyl]amine, respectively. Trinuclear RuII polypyridyl complexes [(bpy)6Ru3H3L1–3](PF6)6 were prepared by the condensation of Ru(bpy)2Cl2 · 2H2O with ligands H3L1–3. The pH effects on the UV/Vis absorption and fluorescence spectra of the three complexes were studied, and ground‐ and excited‐state ionization constants of the three complexes were derived. The three complexes act as “off‐on‐off” fluorescence pH switch through protonation and deprotonation of imidazole ring with a maximum on‐off ratio of 5 in buffer solution at room temperature.  相似文献   

3.
Four polypyridyl bridging ligands BL1−4 containing open‐chain crown ether, where BL1−3 formed by the condensation of 4,5‐diazafluoren‐9‐oxime with diethylene glycol di‐p‐tosylate, triethylene glycol di‐p‐tosylate, and tetraethylene glycol di‐p‐tosylate, respectively. BL4 formed by the reaction of 4‐(1,10‐phenanthrolin‐5‐ylimino)methylphenol with triethylene glycol di‐p‐tosylate, have been synthesized. Reaction of Ru(bpy)2Cl2·2H2O with BL, respectively, afforded four bimetallic complexes [(bpy)2RuBL1−4Ru(bpy)2]4+ as [PF6] salts. Electrochemistry of these complexes is consistent with one RuII‐based oxidation and several ligand‐based reductions. These complexes show metal‐to‐ligand charge transfer absorption at 439‐452 nm and emission at 570‐597 nm.  相似文献   

4.
Two tetrapodal ligands L1 and L2 containing 4,5-diazafluorene units have been synthesized and characterized. Both ligands are composed of two kinds of nonequivalent coordinating sites: one involves the 4-(4,5-diazafluoren-9-ylimino)phenoxy moiety, and the other one involves the 2-(4,5-diazafluoren-9-ylimino)phenoxy moiety. The Ru(II) complexes [(bpy)8Ru4(L1)](PF6)8 and [(bpy)8Ru4(L2)](PF6)8 (bpy = 2,2′-bipyridine) have been obtained by refluxing Ru(bpy)2Cl2·2H2O and each ligand in 2-methoxyethanol. Both complexes exhibit metal-to-ligand charge transfer (MLCT) absorptions at around 443 nm and emission at around 574 nm. Electrochemical studies of both complexes display one Ru(II)-centered oxidation at around 1.33 V and three ligand-centered reductions.  相似文献   

5.
A new family of trimetallic complexes of the form [(bpy)2M(phen‐Hbzim‐tpy)M′(tpy‐Hbzim‐phen)M(bpy)2]6+ (M=RuII, Os; M′=FeII, RuII, Os; bpy=2,2′‐bipyridine) derived from heteroditopic phenanthroline–terpyridine bridge 2‐{4‐[2,6‐di(pyridin‐2‐yl) pyridine‐4‐yl]phenyl}‐1H‐imidazole[4,5‐f][1,10]phenanthroline (phen‐Hbzim‐tpy) were prepared and fully characterized. Zn2+ was used to prepare mixed‐metal trimetallic complexes in situ by coordinating with the free tpy site of the monometallic precursors. The complexes show intense absorptions throughout the UV/Vis region and also exhibit luminescence at room temperature. The redox behavior of the compounds is characterized by several metal‐centered reversible oxidation and ligand‐centered reduction processes. Steady‐state and time‐resolved luminescence data show that the potentially luminescent RuII‐ and OsII‐based triplet metal‐to‐ligand charge‐transfer (3MLCT) excited states in the triads are quantitatively quenched, most likely by intercomponent energy transfer to the lower lying 3MLCT (for Ru and Os) or triplet metalcentered (3MC) excited states of the FeII subunit (nonluminescent). Interestingly, iron did not adversely affect the photophysics of the respective systems. This suggests that the multicomponent molecular‐wire‐like complexes investigated here can behave as efficient light‐harvesting antennas, because all the light absorbed by the various subunits is efficiently channeled to the subunit(s) in which the lowest‐energy excited states are located.  相似文献   

6.
The new compounds [(acac)2Ru(μ‐boptz)Ru(acac)2] ( 1 ), [(bpy)2Ru(μ‐boptz)Ru(bpy)2](ClO4)2 ( 2 ‐(ClO4)2), and [(pap)2Ru(μ‐boptz)Ru(pap)2](ClO4)2 ( 3 ‐(ClO4)2) were obtained from 3,6‐bis(2‐hydroxyphenyl)‐1,2,4,5‐tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J=?36.7 cm?1) RuIII centers. We have investigated the role of both the donor and acceptor functions containing the boptz2? bridging ligand in combination with the electronically different ancillary ligands (donating acac?, moderately π‐accepting bpy, and strongly π‐accepting pap; acac=acetylacetonate, bpy=2,2′‐bipyridine pap=2‐phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal–ligand–metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(μ‐boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co ‐ ligand for both RuIII and RuII is demonstrated by the adoption of the mixed ‐ valent form in [L2Ru(μ‐boptz)RuL2]3+, L=bpy, whereas the corresponding system with pap stabilizes the RuII states to yield a phenoxyl radical ligand and the compound with L=acac? contains two RuIII centers connected by a tetrazine radical‐anion bridge.  相似文献   

7.
Two tripodal ligands H3L1 and H3L2 containing imidazole rings have been prepared by the reaction of 1,10-phenanthroline-5,6-dione with 1,3,5-tris[(4-formylphenoxy)methyl]benzene and 1,3,5-tris[(2-formylphenoxy)methyl]benzene, respectively. Trinuclear Ru(II) complexes [(bpy)6Ru3H3L1?C2](PF6)6 (bpy=2,2??-bipyridine) have been obtained by the condensation of Ru(bpy)2Cl2?·?2H2O with ligands H3L1 and H3L2, respectively. The pH effects on the UV?CVis absorption and emission spectra of both complexes have been studied, and ground- and excited-state ionization constants of both complexes have been derived. The photophysical properties of both complexes are strongly dependent on the solution pH. They act as pH-induced switchable luminescence sensors through protonation and deprotonation of the imidazole groups, with a maximum on?Coff ratio of 6 in buffer solution at room temperature.  相似文献   

8.
陈晓彤  董彬  崔孟超  王科志  金林培 《化学学报》2007,65(12):1181-1184
比较研究了以C2O42-为共反应物时5个结构相关的Ru(II)配合物[Ru(bpy)2L1]2+, [Ru(bpy)2L2]2+, [Ru(bpy)2L3]2+, [Ru(phen)2L1]2+和[Ru(phen)2L2]2+(其中bpy=2,2′-联吡啶, phen=1,10-邻菲啰啉, L1=4-羧基苯基咪唑[4,5-f][1,10]邻菲啰啉, L2=3-羧基-4-羟基苯基咪唑[4,5-f][1,10]邻菲啰啉, L3=3,4-二羟基苯基咪唑[4,5-f][1,10]邻菲啰啉)的电致化学发光(ECL)性质. 结果表明, 酚羟基的存在能有效地淬灭Ru(II)配合物[Ru(bpy)2L2]2+, [Ru(bpy)2L3]2+和[Ru(phen)2L2]2+的ECL, 其它Ru(II)配合物的ECL量子效率与[Ru(bpy)3]2+相差不大.  相似文献   

9.
This article deals with the hitherto unexplored metal complexes of deprotonated 6,12‐di(pyridin‐2‐yl)‐5,11‐dihydroindolo[3,2‐b]carbazole (H2L). The synthesis and structural, optical, electrochemical characterization of dimeric [{RuIII(acac)2}2(μ‐L.?)]ClO4 ([ 1 ]ClO4, S=1/2), [{RuII(bpy)2}2(μ‐L.?)](ClO4)3 ([ 2 ](ClO4)3, S=1/2), [{RuII(pap)2}2(μ‐L2?)](ClO4)2 ([ 4 ](ClO4)2, S=0), and monomeric [(bpy)2RuII(HL?)]ClO4 ([ 3 ]ClO4, S=0), [(pap)2RuII(HL?)]ClO4 ([ 5 ]ClO4, S=0) (acac=σ‐donating acetylacetonate, bpy=moderately π‐accepting 2,2’‐bipyridine, pap=strongly π‐accepting 2‐phenylazopyridine) are reported. The radical and dianionic states of deprotonated L in isolated dimeric 1 +/ 2 3+ and 4 2+, respectively, could be attributed to the varying electronic features of the ancillary (acac, bpy, and pap) ligands, as was reflected in their redox potentials. Perturbation of the energy level of the deprotonated L or HL upon coordination with {Ru(acac)2}, {Ru(bpy)2}, or {Ru(pap)2} led to the smaller energy gap in the frontier molecular orbitals (FMO), resulting in bathochromically shifted NIR absorption bands (800–2000 nm) in the accessible redox states of the complexes, which varied to some extent as a function of the ancillary ligands. Spectroelectrochemical (UV/Vis/NIR, EPR) studies along with DFT/TD‐DFT calculations revealed (i) involvement of deprotonated L or HL in the oxidation processes owing to its redox non‐innocent potential and (ii) metal (RuIII/RuII) or bpy/pap dominated reduction processes in 1 + or 2 2+/ 3 +/ 4 2+/ 5 +, respectively.  相似文献   

10.
A tripodal ligand L1 and dipodal ligand L2 containing imidazole rings have been synthesized by the reaction of 1,10-phenanthroline-5,6-dione with 2,2??-bipyridine-4,4??-dicarbaldehyde and 4-methyl-2,2??-bipyridine-4??-carbaldehyde, respectively, in the presence of ammonium acetate. Both ligands have two kinds of nonequivalent coordinating sites: one involving the phenanthroline moiety and the other involving the 2,2??-bipyridine moiety. The Ru(II) complexes, [(bpy)6Ru3(L1)](PF6)6 and [(bpy)4Ru2(L2)](PF6)4 (bpy?=?2,2??-bipyridine), have been obtained by refluxing Ru(bpy)2Cl2·2H2O with each ligand in solution. The two complexes display MLCT absorptions at 465 and 480?nm, respectively, and emission at 665 and 675?nm, respectively, in CH3CN solution. Electrochemical studies of both complexes show one Ru(II)-centered oxidation at around 1.29?V and three ligand-centered reductions.  相似文献   

11.
A ditopic benzobis(carbene) ligand precursor was prepared that contained a chelating pyridyl moiety to ensure co‐planarity of the carbene ligand and the coordination plane of a bound octahedral metal center. Bimetallic ruthenium complexes comprising this ditopic ligand [L4Ru‐C,N‐bbi‐C,N‐RuL4] were obtained by a transmetalation methodology (C,N‐bbi‐C,N=benzobis(N‐pyridyl‐N′‐methyl‐imidazolylidene). The two metal centers are electronically decoupled when the ruthenium is in a pseudotetrahedral geometry imparted by a cymene spectator ligand (L4=[(cym)Cl]). Ligand exchange of the Cl?/cymene ligands for two bipyridine or four MeCN ligands induced a change of the coordination geometry to octahedral. As a consequence, the ruthenium centers, separated through space by more than 10 Å, become electronically coupled, which is evidenced by two distinctly different metal‐centered oxidation processes that are separated by 134 mV (L4=[(bpy)2]; bpy=2,2′‐bipyridine) and 244 mV (L4=[(MeCN)4]), respectively. Hush analysis of the intervalence charge‐transfer bands in the mixed‐valent species indicates substantial valence delocalization in both complexes (delocalization parameter Γ=0.41 and 0.37 in the bpy and MeCN complexes, respectively). Spectroelectrochemical measurements further indicated that the mixed‐valent RuII/RuIII species and the fully oxidized RuIII/RuIII complexes gradually decompose when bound to MeCN ligands, whereas the bpy spectators significantly enhance the stability. These results demonstrate the efficiency of carbenes and, in particular, of the bbi ligand scaffold for mediating electron transfer and for the fabrication of molecular redox switches. Moreover, the relevance of spectator ligands is emphasized for tailoring the degree of electronic communication through the benzobis(carbene) linker.  相似文献   

12.
Three heterotopic ligands L1, L2, and L3 have been prepared by the reaction of 4,4′-bis(bromomethyl)-2,2′-bipyridine with 4,5-diazafluoren-9-oxime, 9-(2-hydroxy)phenylimino-4,5-diazafluorene, and 9-(4-hydroxy)phenylimino-4,5-diazafluorene, respectively, in DMF. The three ligands consist of two 4,5-diazafluorene units and one 2,2′-bipyridine unit. Ru(II) complexes [{Ru(bpy)2}33-L1?3)](PF6)6 (bpy = 2,2′-bipyridine) were prepared by refluxing Ru(bpy)2Cl2·2H2O and the ligands in 2-methoxyethanol. The three Ru(II) complexes display metal-to-ligand charge-transfer absorption at 445–450 nm and one Ru(II)-centered oxidation at 1.32 V in CH3CN solution at room temperature. Upon excitation into the metal-to-ligand charge-transfer band, the emission intensities of [{Ru(bpy)2}33-L2)]6+ and [{Ru(bpy)2}33-L3)]6+ are almost equal to that of [{Ru(bpy)2}33-L1)]6+ in CH3CN solution at room temperature, but weaker than that of [{Ru(bpy)2}33-L1)]6+ in EtOH–MeOH (4?:?1, v/v) glassy matrix at 77 K.  相似文献   

13.
Carbon monoxide (CO) has recently been shown to impart beneficial effects in mammalian physiology and considerable research attention is now being directed toward metal–carbonyl complexes as a means of delivering CO to biological targets. Two ruthenium carbonyl complexes, namely trans‐dicarbonyldichlorido(4,5‐diazafluoren‐9‐one‐κ2N,N′)ruthenium(II), [RuCl2(C11H6N2O)(CO)2], (1), and fac‐tricarbonyldichlorido(4,5‐diazafluoren‐9‐one‐κN)ruthenium(II), [RuCl2(C11H6N2O)(CO)3], (2), have been isolated and structurally characterized. In the case of complex (1), the trans‐directing effect of the CO ligands allows bidentate coordination of the 4,5‐diazafluoren‐9‐one (dafo) ligand despite a larger bite distance between the N‐donor atoms. In complex (2), the cis disposition of two chloride ligands restricts the ability of the dafo molecule to bind ruthenium in a bidentate fashion. Both complexes exhibit well defined 1H NMR spectra confirming the diamagnetic ground state of RuII and display a strong absorption band around 300 nm in the UV.  相似文献   

14.
Two polypodands, tetrakis[2-(4,5-diazafluoren-9-ylimino)phenoxymethyl]methane (L1) and 1,1,1-tris[2-(4,5-diazafluoren-9-ylimino)phenoxymethyl]propane (L2), and their corresponding Ru(II) polypyridyl complexes have been synthesized and characterized. The photophysical behaviors of the two complexes were investigated by UV–vis absorption and emission spectroscopy. They display metal-to-ligand charge transfer (MLCT) absorptions at around 443 nm in MeCN solution at room temperature and emission at around 573 nm in EtOH:MeOH (4:1) glassy matrix at 77 K. Electrochemical studies of the two complexes show one Ru(II)-centered oxidation at around 1.35 V and three ligand-centered reductions.  相似文献   

15.
The 1,5,6,7,8,8a‐hexahydroimidazo[1,5‐a]pyridine, 3, was quaternized with 2‐(bromomethyl‐1,3,5‐trimethylbenzene, 1,4‐bis(bromomethyl)‐2,3,5,6‐tetramethylbenzene, 2,4‐bis(bromomethyl)‐1,3,5‐trimethylbenzene, 1,3,5‐tris(bromomethyl)‐2,4,6‐trimethylbenzene and 1,3,5‐tris(bromomethyl)‐2,4,6‐triethylbenzene to obtain mono‐, bis‐ and tris‐imidazolinium salts (4–7) which were characterized by elemental analysis and NMR spectroscopy. In order to understand the effects of these changes on the N‐substituent and how they translate to catalytic activity, these new salts (4–7) with Pd(OAc)2 were applied as in situ catalysts for Suzuki‐Miyaura and Heck‐Mirozoki cross‐coupling reactions of aryl chlorides and aryl bromides, respectively. The tris‐imidazolinium salts (7) were found to be more efficient than the related analogs 4–6. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Based on the a ligand BDPPZ [(9a,13a‐dihydro‐4,5,9,14‐tetraaza‐benzo[b]triphenylene‐11‐yl)‐phenyl‐methanone] (1) and its polypyridyl hetero‐ and homoleptic Ru(II) metal complexes, [Ru(bpy)2L](PF6)2 (2), [Ru(phen)2L](PF6)2 (3), [Ru(dafo)2L](PF6)2 (4), [Ru(dcbpy)2L](PF6)2 (5) and [RuL3](PF6)2 (6) (where, L = ligand, bpy = 2,2′‐bipyridine, phen = 1,10‐phenantroline, dafo = 4,5‐diazafluoren‐9‐one and dcbpy = 3,3′‐dicarboxy‐2,2′‐bipyridine), have been synthesized and characterized by elemental analysis, UV–vis, FT‐IR, 1H and 13C‐NMR spectra (for ligand), molar conductivity measurements and X‐ray powder techniques. The electrochemical parameters of the substituted ligand and its polypyridyl hetero‐ and homoleptic Ru(II) metal complexes are reported by cyclic voltammetry. UV–vis spectroscopy is used to compare the differences between the conjugated π systems in this ligand and its Ru(II) metal complexes. The polypyridyl hetero‐ and homoleptic Ru(II) metal complexes also tested as catalysts for the formation of cyclic organic carbonates from carbon dioxide and liquid epoxides which served as both reactant and solvent. The results showed that the [Ru(L)3](PF6)2 (6) complex is more efficient than the other Ru(II) complexes for the formation of cyclic organic carbonates from carbon dioxide. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A rare example of a mononuclear complex [(bpy)2Ru(L1?H)](ClO4), 1 (ClO4) and dinuclear complexes [(bpy)2Ru(μ‐L1?2H)Ru(bpy)2](ClO4)2, 2 (ClO4)2, [(bpy)2Ru(μ‐L2?2H)Ru(bpy)2](ClO4)2, 3 (ClO4)2, and [(bpy)2Ru(μ‐L3?2H)Ru(bpy)2](ClO4)2, 4 (ClO4)2 (bpy=2,2′‐bipyridine, L1=2,5‐di‐(isopropyl‐amino)‐1,4‐benzoquinone, L2=2,5‐di‐(benzyl‐amino)‐1,4‐benzoquinone, and L3=2,5‐di‐[2,4,6‐(trimethyl)‐anilino]‐1,4‐benzoquinone) with the symmetrically substituted p‐quinone ligands, L, are reported. Bond‐length analysis within the potentially bridging ligands in both the mono‐ and dinuclear complexes shows a localization of bonds, and binding to the metal centers through a phenolate‐type “O?” and an immine/imminium‐type neutral “N” donor. For the mononuclear complex 1 (ClO4), this facilitates strong intermolecular hydrogen bonding and leads to the imminium‐type character of the noncoordinated nitrogen atom. The dinuclear complexes display two oxidation and several reduction steps in acetonitrile solutions. In contrast, the mononuclear complex 1 + exhibits just one oxidation and several reduction steps. The redox processes of 1 1+ are strongly dependent on the solvent. The one‐electron oxidized forms 2 3+, 3 3+, and 4 3+ of the dinuclear complexes exhibit strong absorptions in the NIR region. Weak NIR absorption bands are observed for the one‐electron reduced forms of all complexes. A combination of structural data, electrochemistry, UV/Vis/NIR/EPR spectroelectrochemistry, and DFT calculations is used to elucidate the electronic structures of the complexes. Our DFT results indicate that the electronic natures of the various redox states of the complexes in vacuum differ greatly from those in a solvent continuum. We show here the tuning possibilities that arise upon substituting [O] for the isoelectronic [NR] groups in such quinone ligands.  相似文献   

18.
Jiang  Cai-Wu  Chao  Hui  Li  Run-Hua  Li  Hong  Ji  Liang-Nian 《Transition Metal Chemistry》2002,27(5):520-525
Three RuII complexes [Ru(bpy)2(PIP)]2+, [Ru(PIP)2(bpy)]2+ and [Ru(PIP)3]2+ (PIP = 2-phenylimidazo[4,5-f][1,10]phenanthroline, bpy = 2,2-bipyridine) were prepared and characterized by electrospray mass spectrometry, 1H-n.m.r, u.v.–vis. and electrochemistry. The nonlinear optical properties (NLO) of the RuII complexes were investigated by Z-scan techniques with 12 ns laser pulses at 540 nm, and all of them exhibit both NLO absorption and self-defocusing effects. The corresponding effective NLO susceptibility |3| of the complexes is in the (4.15 – 4.86) × 10–12 e.s.u. range.  相似文献   

19.
The mechanism of O2 evolution from water catalyzed by a series of mononuclear aquaruthenium complexes, [Ru(terpy)(bpy)(OH2)]2+, [Ru(tmtacn)(R2bpy)(OH2)]2+ (R=H, Me, and OMe; R2bpy=4,4′‐disubstituted‐2,2′‐bipyridines), and [Ru(tpzm)(R2bpy)(OH2)]2+ (R=H, Me, and OMe), is investigated, where terpy=2,2′:6′,2′′‐terpyridine, bpy=2,2′‐bipyridine, tmtacn=1,4,7‐trimethyl‐1,4,7‐triazacyclononane, and tpzm=tris(1‐pyrazolyl)methane. The kinetics of O2 evolution is investigated as a function of either the catalyst concentration or the oxidant concentration by employing Ce(NH4)2(NO3)6 as an oxidant; these catalysts can be classified into two groups that have different rate laws for O2 evolution. In one class, the rate of O2 evolution is linear to both the catalyst and Ce4+ concentrations, as briefly reported for [Ru(terpy)(bpy)(OH2)]2+ (S. Masaoka, K. Sakai, Chem. Lett. 2009 , 38, 182). For the other class, [Ru(tmtacn)(R2bpy)(OH2)]2+, the rate of O2 evolution is quadratic to the catalyst concentration and independent of the Ce4+ concentration. Moreover, the singlet biradical character of the hydroxocerium(IV) ion was realized by experimental and DFT investigations. These results indicate that the radical coupling between the oxygen atoms of a RuV?O species and a hydroxocerium(IV) ion is the key step for the catalysis of [Ru(terpy)(bpy)(OH2)]2+ and [Ru(tpzm)(R2bpy)(OH2)]2+, while the well‐known oxo‐oxo radical coupling among two RuV?O species proceeds in the catalysis of [Ru(tmtacn)(R2bpy)(OH2)]2+. This is the first report demonstrating that the radical character provided by the hydroxocerium(IV) ion plays a crucial role in the catalysis of such ruthenium complexes in the evolution of O2 from water.  相似文献   

20.
The mediation of electron‐transfer by oxo‐bridged dinuclear ruthenium ammine [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ for the oxidation of glucose was investigated by cyclic voltammetry. These ruthenium (III) complexes exhibit appropriate redox potentials of 0.131–0.09 V vs. SCE to act as electron‐transfer mediators. The plot of anodic current vs. the glucose concentration was linear in the concentration range between 2.52×10?5 and 1.00×10?4 mol L?1. Moreover, the apparent Michaelis‐Menten kinetic (KMapp) and the catalytic (Kcat) constants were 8.757×10?6 mol L?1 and 1,956 s?1, respectively, demonstrating the efficiency of the ruthenium dinuclear oxo‐complex [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ as mediator of redox electron‐transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号