首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
窄分子量分布茂金属短链支化聚乙烯结晶动力学   总被引:5,自引:0,他引:5  
本工作用DSC方法对三种不同支化度的茂金属短链支化聚乙烯的等温、非等温结晶行为进行了研究 .样品为乙烯和己烯 1的共聚物 ,短支链主要为正丁基 ,分子量Mw =2 0 ,0 0 0 ,Mw/Mn<1 15 ,支化度 (每10 0 0C中CH3 数目 )分别为 1 6、10 4、40 .实验结果表明 ,茂金属短链支化聚乙烯结晶方式Ⅰ Ⅱ转变温度随支化度增加而降低 ,分别为 119 8℃、115 9℃、113 3℃ ;同时支链的存在降低了二次成核速率 ,增大了方式Ⅰ的结晶范围 ,总的结晶速度随支化度增大而减小  相似文献   

2.
研究了湿法隔膜超高分子量聚乙烯(UHMWPE)与白油混合体系在挤出流延过程中快速、非等温结晶行为。通过Flash DSC和常规DSC技术表征了不同固含量体系在不同冷却速率条件下微观晶体结构特性。结果表明:当冷却速率低于104 K/min时,起始结晶温度随冷却速率增大而缓慢降低,得到的晶体片晶熔融温度和厚度随冷却速率增大而减小;当冷却速率高于104 K/min时,起始结晶温度随冷却速率增大而迅速降低,而片晶厚度则变化不大;高的流延辊温得到的铸片晶体熔融温度高,片晶厚度大,且UHMWPE固含量越高,高、低温流延辊得到的铸片晶体熔融温度与片晶厚度差别越大。  相似文献   

3.
用DSC、WAXD和SAXS研究了聚乙烯醇(PVAl)/聚乙烯基吡咯烷酮(PVP)共混体系的结晶行为.PVAl的结晶度随PVP含量增加而减少,并存在结晶度为零的组成(PVAl)的重量分数约为50%.与纯PVAl相比,共混物的温度区间T_m-T_g减小,表明PVP对PVAl的结晶起抑制作用.共混物中PVAl的结晶速度下降,具体表现为PVAl过冷区随PVP含量增加而扩大,动力学速度常数减小,球晶增长速度下降.纯PVAl和共混体系的等温结晶速率均遵循Avrami方程.退火样品的长周期、片晶厚度和过渡层厚度大于相同组成未退火样品.两者长周期随PVP含量增长加显著增大,片晶厚度增长次之,过渡层厚度变化不大.  相似文献   

4.
茂金属聚乙烯的非等温结晶行为及其动力学研究   总被引:15,自引:0,他引:15  
为探索分子量和支链含量对聚乙烯非等温结晶过程的影响,选用3组样品:(1)不同分子量的无支链线形聚乙烯;(2)低分子量的支链含量不同的试样;(3)高分子量的支链含量不同的试样。用DSC研究了这3组样品的非等温结晶动力学。结果表明:(1)与支链含量相比,分子量大小对结晶的影响是次要的,但高分子量样品的结晶度比低分子量样品低;(2)支链对聚乙烯的非等温结晶有重要影响,在支化聚乙烯中起决定作用;(3)无论是高分子量试样还是低分子量试样,支化含量增加,聚乙烯的结晶温度、结晶度、结晶动力学以及晶体的熔点等显著降低。  相似文献   

5.
茂金属聚乙烯共混体系液液相分离行为   总被引:2,自引:0,他引:2  
研究了茂金属催化的高密度聚乙烯 (mPEO)和传统工艺生产的低密度聚乙烯 (LDPE)共混体系液 液相分离行为 .用DSC测试了共混体系在两种聚乙烯熔点之间的等温结晶动力学 ,发现共混体系经过 15 0℃培养 ,其等温结晶速率明显增快 .在排除成核作用和共结晶的影响后 ,表明上述结果是由于聚乙烯共混体系在熔融态发生了液 液相分离引起的 .从而为聚乙烯共混体系液 液相分离的存在提供了新证据  相似文献   

6.
茂金属聚乙烯的非等温结晶动力学   总被引:8,自引:0,他引:8  
对茂金属催化和传统工艺生产的聚乙烯的非等温结晶行为进行了研究,用DSC测试了两种聚乙烯的非等温结晶过程,对所得数据分别用Ozawa方程和莫志深方法进行了处理,发现:由于茂金属聚乙烯有着较高的立构规整性.所以虽然它的分子链较长,但结晶速率高于传统聚乙烯,两种聚乙烯非等温结晶过程中的成核和生长机理也不同,茂金属聚乙烯的生长维数高于传统聚乙烯  相似文献   

7.
茂金属支化聚乙烯技术是聚烯烃工业发展史上最重要的技术进展之一,该类产品具有优异的抗穿刺、抗撕裂、抗冲击性质,在薄膜、重包装等领域具有广泛的用途,其力学性能与共聚单体的种类、含量及其在分子链上的分布有密切关系。本文从催化剂活性中心特点和聚合反应工艺条件两方面对聚合物结构的影响出发,阐述了茂金属聚乙烯短链支化结构不均匀性产生的原因,通过核磁共振、升温淋洗分级和热分级等表征支化不均匀性的研究方法,介绍了茂金属支化聚乙烯分子主链上共聚单体的序列结构组成及分布,以及共聚物的结晶性能等方面的差异。  相似文献   

8.
利用透射电子显微学(TEM)和示差扫描量热学(DSC)等方法研究了含少量丁烯-1组分(摩尔分数为0.64%)的聚乙烯共聚物(PE100)熔体拉伸高取向薄膜的形态结构. 结果表明, 在PE100熔体拉伸薄膜中, 除存在高取向片晶结构外, 还含有大量的纤维晶, 纤维晶平行于拉伸方向, 穿过几个片晶区, 平均直径约为12 nm. 模拟实验结果表明, 纤维晶的生成源于聚乙烯共聚物中的超高分子量组分, 但不同于传统意义上的伸直链纤维晶, 其形态特征应为晶桥结构. 由此提出了晶桥结构纤维晶模型, 该模型不但有助于深入理解和认识聚合物取向结晶机理, 同时也为该材料的高性能化提供了理论依据.  相似文献   

9.
聚乙烯片晶辐照破坏机理的电子显微镜研究   总被引:1,自引:0,他引:1  
用透射电子显微镜观察了高密度辐照聚乙烯的形态结构,并通过统计方法定量地分析了其结构与辐照剂量的关系。发现室温辐照聚乙烯的片晶形态不随辐照剂量而变化。若将室温辐照聚乙烯重新熔融,然后再于125℃下等温结晶4h后,其片晶厚度则随辐照剂量的增加而变薄,长周期亦随之变短。小角X射线散射的测试结果与上述结果符合得很好。室温辐照聚乙烯及其125℃重结晶试样的电子显微镜数据从又一直观角度验证了辐照聚乙烯“片晶内部破坏机理”的正确性。  相似文献   

10.
硬弹性聚丙烯的排状堆积片晶   总被引:1,自引:0,他引:1  
用广角X射线衍射、小角X光散射等手段对硬弹性聚丙烯中排状堆积片晶的形成及结构进行了研究。结果表明,应力场下聚丙烯熔体结晶,得到的硬弹性聚丙烯具有垂直于挤出方向而又平行堆积的片晶结构(即排状堆积片晶)。熔融温度越高,排状堆积片晶所需的熔体拉伸比越高。而随着熔体所受拉伸比的增加,片晶厚度有所增加。随着熔融温度升高,片晶厚度下降。热处理温度在110-120℃之间,片晶厚度随热处理温度升高明显增加。  相似文献   

11.
Solution crystallization of metallocene short chain branched polyethylene (SCBPE) was carried out and very nicesingle crystals were obtained. Compared with single crystals grown from linear polyethylene, SCBPE single crystals are dirtydue to intermolecular heterogeneity The crystal morphology changes with crystallization temperatures. Lozenge, truncatedlozenge, hexagonal, rounded and elongated crystal morphologies have been found at much lower crystallization temperaturethan in linear polyethylene. The electron diffraction shows there is a possibility that the single crystals may have hexagonalpacking in a crystallization temperature range. The lateral habits of single crystal are discussed based on roughening theories.  相似文献   

12.
YaPeng  傅强 《高分子科学》2004,(5):431-438
Metallocene-catalyzed short chain branched polyethylene (SCBPE) was blended with LDPE, HDPE, PS, EPDM and iPP in the weight proportions of 80 and 20. The crystallization and mechanical properties of these blends were studied by PLM, DSC and DMA. It has been observed in PLM that SCBPE/LDPE, SCBPE/HDPE and SCBPE/EPDM can form band spherulites whose band width and size are both smaller than that of the pure SCBPE. Tiny crystallites are observed in the completely immiscible SCBPE/PS blend. The crystallites in SCBPE/iPP are very small and only irregular spherulites are seen. The crystallization kinetics and mechanical properties of SCBPE are greatly affected by the second polyolefin, but in a different way, depending on the phase behavior and the modulus of the second components. SCBPE may be phase miscible in the melt with HDPE, LDPE and EPDM and co-crystallize together with HDPE or LDPE during cooling. A big change of crystal morphology and crystallization kinetics is seen in SCBPE/iPP blend compared with pure SCBPE and the lowest tanδ is also seen for this system. DMA results show that the tensile modulus of the blends has nothing to do with phase behavior, but only depends on the modulus of the second component.  相似文献   

13.
Wang  Jia-Yao  Li  Yong-Jin  You  Ji-Chun  Bian  Feng-Gang 《高分子科学》2022,40(6):631-641

In this work, phase segregation and localization of PBSU have been investigated with the combination of SAXS and DSC in its blend with PVDF. After stepwise crystallization of PVDF and PBSU, there are double melting peaks of PBSU in DSC and double scattering peaks in SAXS. It has been demonstrated that double peaks can be attributed to the localization of PBSU in interlamellar/interfibrillar region in pre-formed PVDF crystal framework. In the case of low content of PBSU in blend, PBSU is trapped into the interlamellar region of PVDF crystals, resulting in the alternating lamellae crystal of them and the first peak (with low-q) in SAXS. The enhanced confinement effect produces thinner PBSU lamellae, corresponding to the lower melting temperature in DSC. Upon increasing its content in blend, some PBSU segregates in interfibrillar regions in addition to the enrichment in interlamellar regions of PVDF crystal framework. The larger space and higher concentration of PBSU in interfibrillar-regions contribute to periodic lamellae structure of PBSU with higher thickness, which is the reason for the second peak (with high-q) in SAXS and DSC. Our results not only clarify the relationship between localization of PBSU in interlamellar/interfibrillar regions and double peaks in DSC/SAXS, but also provide a novel strategy to detect the interlamellar and interfibrillar segregation of low-Tm component in miscible crystalline/crystalline blend.

  相似文献   

14.
The annealing behavior of low-density melt-crystallized polyethylene is discussed in terms of an unprecedented lamellar diffusion mechanism. For this purpose a combined small-angle x-ray diffraction (SAXS) and differential scanning calorimetry (DSC) study has been carried out. The presence of an initial double-lamellar population is directly evidenced by electron microscopy of freeze-cut and stained sections. The intercalation of thinner lamellae within the dominant wide-lamella population gives rise to an x-ray periodicity of 220 Å (structure I). The independent stacking of thinner lamellae within the material contributes to a second periodicity at 110 Å (structure II). During annealing at successively higher temperatures TA, the low-molecular-weight components from the thin lamellae progressively diffuse out of the double population, reinforcing the stacks of thinner lamellae. At the melting temperature of the thinner crystals a complete segregation of these lamellae takes place, and a new periodicity (structure III) corresponding to stacks of collapsed thick lamellae emerges. The periodicity of structure III increases further with TA. The thin lamellae of structure II can be extracted by a solvent, removing the corresponding SAXS peak and DSC maxima. The partial removal of thin lamellae from structure I by means of solvent extraction concurrently yields a decrease of the SAXS period. The present results suggest that molecular segregation of a low-molecular-weight fraction, contributing to the population of thinner lamellae, occurs during annealing.  相似文献   

15.
The isothermal crystallization and subsequent melting behavior of one propylene homopolymer and three propylene-1-decene copolymers with different comonomer contents prepared by metallocene catalyst were studied using differential scanning calorimetry (DSC). It is found that the Avrami exponent of the propylene copolymers decreases gradually with the increase of comonomer content, from 3.0 for the propylene homopolymer to 1.4 for the copolymer with 7.83 mol% 1-decene units. Higher comonomer content also weakens the dependence of crystallization rate constant and crystallization halftime on temperature. Double melting peaks, which correspond to α and γ crystal phases, respectively, are observed for all copolymers under isothermal crystallization. The result shows that higher crystallization temperature is favorable to the segregation of α and γ crystal phases, resulting in higher proportion of γ crystal phase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The multiple endothermic peaks of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(P(HB-co-HV)) in differential scanning calorimetry(DSC) results, as one representative phenomenon of polymer with unique cocrystallization behavior, were generally considered as the results of melting/recrystallization. In this study, wide angle X-ray diffraction(WAXD) and small angle X-ray scattering(SAXS) experiments were conducted to analyze the phenomena of multiple endothermic peaks in DSC results. The results of these analyses indicated that the multiple endotherms were mainly caused by different lamellae structures. For P(HB-co-HV) with lower HV content, it was comprised of two structures of HV total exclusion and HV partial inclusion in the crystal lamellae. For P(HB-co-HV) with higher HV content, it was also comprised of two structures of HV total inclusion and HV partial inclusion in the crystal lamellae. However, only structure with HV partial inclusion in the crystal lamellae remained existing after first melting peak for all samples.  相似文献   

17.
聚环氧乙烷的双层片晶   总被引:2,自引:0,他引:2  
聚环氧乙烷(M_n=7000)的双层片晶形态用透射电镜和差示扫描量热计进行了研究。在结晶温区54—56℃,现察到双层片晶,高于这个温区,同时看到双层片晶及单层片晶,低于这个温区,只看到单层片晶。双层片晶的熔点稍高于单层片晶。根据非整数次折迭链晶向整数次折迭链晶的转变,讨论了双层片晶和单层片晶的生长过程。在双层片晶界面上的H键降低了表面自由能,这是形成双层片晶的主要原因。  相似文献   

18.
This paper is devoted to the study of crystallization and melting of two metallocene polyethylenes (m-PEs). A metallocene linear low density polyethylene (m-LLDPE) and a metallocene very low density polyethylene (m-VLDPE) were used consisting of 3.3 mol% butyl and 6 mol% ethyl branches, respectively. Several melt endotherms after stepwise crystallization revealed that the two m-PEs consisted of molecular fractions with different molecular weight and branch distribution. More segregation was observed for the m-VLDPE comparing with m-LLDPE. Using the relationships proposed by Hosoda, the short chain branching distribution (SCBD) and the average methylene groups in the lamella thickness were also calculated for the two polymers. These values were compared with the values obtained from theory of rubber elasticity. There was a very good correlation between the data.  相似文献   

19.
王宗宝 《高分子科学》2016,34(12):1510-1522
The multiple endothermic peaks of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(HB-co-HV)) in differential scanning calorimetry (DSC) results, as one representative phenomenon of polymer with unique cocrystallization behavior, were generally considered as the results of melting/recrystallization. In this study, wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS) experiments were conducted to analyze the phenomena of multiple endothermic peaks in DSC results. The results of these analyses indicated that the multiple endotherms were mainly caused by different lamellae structures. For P(HB-co-HV) with lower HV content, it was comprised of two structures of HV total exclusion and HV partial inclusion in the crystal lamellae. For P(HB-co-HV) with higher HV content, it was also comprised of two structures of HV total inclusion and HV partial inclusion in the crystal lamellae. However, only structure with HV partial inclusion in the crystal lamellae remained existing after first melting peak for all samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号