首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
GalactosylatedN-3-guanidinopropylmethacrylamide-co-poly (ethylene glycol) methacrylate copolymers (galactosylated GPMA-co-PEGMA, GGP) were developed in order to promote transfection efficiency in the presence of serum in this report. First of all, the galactosylated PEGMA-co-GPMA copolymers were prepared via aqueous reversible addition – fragmentation chain transfer polymerization (RAFT) of poly (ethylene glycol) methacrylate (PEGMA) with long circulating chain segment and N-3-aminopropyl methacrylamide (APMA) followed by galactosylation and guanidinylation. After that, GGP/plasmid DNA complexes were examined by a dynamic light scattering and gel electrophoresis. It is showed that GGP copolymers have effective condensing ability. The cytotoxicity of GGP was measured by MTT assay. It was found that all the GGP/plasmid DNA complexes had less cytotoxic effects on HepG2 cells than HeLa cells, and the galactose groups reduced the cytotoxicity of complexes with high charge ratios to HepG2 cells. Finally, the transfection efficiency of the galactosylated PEGMA-co-GPMA copolymers was investigated by luciferase expression assay. The results revealed that the copolymers with galactose groups more than 5.83% could induce the asialoglycoprotein (ASGP) receptor mediated transfection, which improved the transfection efficiency in target cells. The GPMA-co-PEGMA copolymers with 54.57% hydrophilic chain segment PEG should prevent the aggregation of protein on the GGP/pDNA complexes, and GGP with 7.94% galactose graft exhibited the highest transfection in the presence of serum.  相似文献   

2.
This study sought to evaluate the in vitro transfection efficiency of plasmid DNA (pDNA)-loaded chitosan-modified poly(DL-lactide-co-glycolide) nanospheres (CS-PLGA NS) in a gene-delivery system. Using the emulsion solvent diffusion (ESD) method, pDNA-loaded PLGA NS was prepared and the surface of the PLGA NS was modified by binding to CS. Gene transfection ability of CS-PLGA NS was examined in A549 cells. The luciferase gene was used as a reporter gene. The pattern of luciferase activity by pDNA-loaded CS-PLGA NS was initially weak, but gradually grew stronger before decreasing activity. These phenomena should be in accordance with the sustained-release profile of pDNA from PLGA NS in the cytosol and the pDNA protection against DNase. Positively charged CS-PLGA NS was found, by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, not to exhibit cytotoxicity on A549 cells. These results suggest that CS-PLGA NS are potential contributors to efficient pDNA delivery due to their increased interactions with cells and lack of cytotoxic effects.  相似文献   

3.
A ferrocene-containing, redox-active cationic lipid that can be transformed using electrochemical methods yields large differences in cell transfection depending on the oxidation state of the lipid. Expression of enhanced green fluorescent protein and firefly luciferase occurs at very high levels when DNA lipoplexes are formulated using the lipid in the reduced state. In contrast, transfection is negligible when oxidized lipid is used. These observations suggest the basis of a general method that could be used to transform inactive lipoplex formulations to an active form through the application of externally applied electrical potentials. The ability to activate lipoplexes toward transfection electrochemically and "on demand" could create new opportunities to deliver DNA in vitro and in vivo with both spatial and temporal control.  相似文献   

4.
The structure of the lipoplex formed from DNA and the sugar-based cationic gemini surfactant 1, which exhibits excellent transfection efficiency, has been investigated in the pH range 8.8-3.0 utilizing small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-TEM). Uniquely, three well-defined morphologies of the lipoplex were observed upon gradual acidification: a lamellar phase, a condensed lamellar phase, and an inverted hexagonal (H(II)) columnar phase. Using molecular modeling, we link the observed lipoplex morphologies and physical behavior to specific structural features in the individual surfactant, illuminating key factors in future surfactant design, viz., a spacer of six methylene groups, the presence of two nitrogens that can be protonated in the physiological pH range, two unsaturated alkyl tails, and hydrophilic sugar headgroups. Assuming that the mechanism of transfection by synthetic cationic surfactants involves endocytosis, we contend that the efficacy of gemini surfactant 1 as a gene delivery vehicle can be explained by the unprecedented observation of a pH-induced formation of the inverted hexagonal phase of the lipoplex in the endosomal pH range. This change in morphology leads to destabilization of the endosome through fusion of the lipoplex with the endosomal wall, resulting in release of DNA into the cytoplasm.  相似文献   

5.
Recently, membrane charge density of lipid membranes, sigma M, has been recognized as a universal parameter that controls the transfection efficiency of complexes made of binary cationic liposomes and DNA (binary lipoplexes). Three distinct regimes, most likely related to interactions between complexes and cells, have also been identified. The purpose of this work was to investigate the transfection efficiency behavior of multicomponent lipoplexes in the regime of optimal membrane charge density (1< sigma M < 2 x 10 (-2) e/A (2)) and compare their performance with that of binary lipoplexes usually employed for gene delivery purposes. We found remarkable differences in transfection efficiency due to lipid composition, with maximum in efficiency being obtained when multicomponent lipoplexes were used to transfect NIH 3T3 cells, while binary lipoplexes were definitely less efficient. These findings suggested that multicomponent systems are especially promising lipoplex candidates. With the aim of providing new insights into the mechanism of transfection, we investigated the structural evolution of lipoplexes when interacting with anionic (cellular) lipids by means of synchrotron small-angle X-ray diffraction (SAXD), while the extent of DNA release upon interaction with anionic lipids was measured by electrophoresis on agarose gels. Interestingly, a clear trend was found that the transfection activity increased with the number of lipid components. These results highlight the compositional properties of carrier lipid/cellular lipid mixtures as decisive factors for transfection and suggest a strategy for the rational design of superior cationic lipid carriers.  相似文献   

6.
Two types of complexes were prepared from a cationic cholesterol derivative, dioleoylphos-phatidylcholine and DNA. Depending on the preparation procedure complexes were either dense snarls of lipid covered DNA (type A) or multilayer liposomes with DNA between layers (type B). The transfection efficiency of the snarl-shaped complexes was low but positive. The transfection efficiency of the liposome-shaped complexes was zero, while DNA release upon their interaction with anionic liposomes was 1.7 times higher. The differences in transfection efficacy and DNA release could not be ascribed to the difference in resistance of complexes to decomposition upon interaction with anionic liposomes or intracellular environment since the lipid composition of complexes is the same. Instead the complexes in which lipoplex phase is more continuous (type A) should require more anionic lipids or more time within a cell for complete decomposition. Prolonged life time should lead to the higher probability of DNA expression.  相似文献   

7.
The development of safe and effective nucleic acid delivery systems remains a challenge, with solid lipid nanoparticle (SLN)-based vectors as one of the most studied systems. In this work, different SLNs were developed, by combination of cationic and ionizable lipids, for delivery of mRNA and pDNA. The influence of formulation factors on transfection efficacy, protein expression and intracellular disposition of the nucleic acid was evaluated in human retinal pigment epithelial cells (ARPE-19) and human embryonic kidney cells (HEK-293). A long-term stability study of the vectors was also performed. The mRNA formulations induced a higher percentage of transfected cells than those containing pDNA, mainly in ARPE-19 cells; however, the pDNA formulations induced a greater protein production per cell in this cell line. Protein production was conditioned by energy-dependent or independent entry mechanisms, depending on the cell line, SLN composition and kind of nucleic acid delivered. Vectors containing 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as unique cationic lipid showed better stability after seven months, which improved with the addition of a polysaccharide to the vectors. Transfection efficacy and long-term stability of mRNA vectors were more influenced by formulation-related factors than those containing pDNA; in particular, the SLNs containing only DOTAP were the most promising formulations for nucleic acid delivery.  相似文献   

8.
The leading principle of non-viral delivery systems for gene therapy is to mediate high levels of gene expression with low cytotoxicity. Nowadays, biodegradable nanoparticles formulated with poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) were wildly developed. However, the relative lower gene transfection efficiency and higher cytotoxicity still remained critical problems. To address these limitations, PLA-PEG nanoparticles have been composited with other components in their formulation. Here, a novel cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was fabricated onto PLA-PEG nanoparticles as a charge modifier to improve the transfection efficiency and cytotoxicity. The obtained cationic LHLN modified PLA-PEG nanoparticles (LHLN-PLA-PEG NPs) could condense pDNA thoroughly via electrostatic force, leading to the formation of the LHLN-PLA-PEG NPs/pDNA complexes (NPs/DNA complexes). The nanoparticles obtained have been characterized in relation to their physicochemical and biological properties, and the results are extremely promising in terms of low cell toxicity and high transfection efficiency. These results indicated that the novel cationic LHLN modified PLA-PEG nanoparticles could enhance gene transfection in vitro and hold the potential to be a promising non-viral nanodevice.  相似文献   

9.
The most important objective of the present study was to explain why cationic lipid (CL)-mediated delivery of plasmid DNA (pDNA) is better than that of linear DNA in gene therapy, a question that, until now, has remained unanswered. Herein for the first time we experimentally show that for different types of CLs, pDNA, in contrast to linear DNA, is compacted with a large amount of its counterions, yielding a lower effective negative charge. This feature has been confirmed through a number of physicochemical and biochemical investigations. This is significant for both in vitro and in vivo transfection studies. For an effective DNA transfection, the lower the amount of the CL, the lower is the cytotoxicity. The study also points out that it is absolutely necessary to consider both effective charge ratios between CL and pDNA and effective pDNA charges, which can be determined from physicochemical experiments.  相似文献   

10.
通过琥珀酸酐将低分子量支化聚乙烯亚胺(PEI, 分子量1000)偶联到普鲁兰多糖(Pullulan)上, 合成了新型基因载体P-PEI. 利用 1H NMR、 FTIR、 粒度仪、 Zeta电位仪、 透射电镜和凝胶电泳对聚阳离子载体及其与质粒pDNA 的复合物进行了表征. 凝胶阻滞实验结果证明, 载体P-PEI在体外可以通过静电相互作用稳定结合pDNA, 并能有效抑制DNA水解酶及血清成分对pDNA的降解. 噻唑蓝(MTT)细胞毒性测试、 绿色荧光蛋白表达质粒(pGFP)及荧光素酶表达质粒(pGL3)转染实验结果表明, 载体P-PEI在N/P高达12.5时对细胞MCF-7, HeLa和COS-7的毒性低于PEI; 当N/P 为6.25时能有效将pGFP和pGL3带入Hela 细胞并表达, 最佳转染效率及荧光素酶活分别为, 比Lipo 2000[(49.13±0.61)%, (58.47±7.62)×108 RLU/mg蛋白) 略低. 因此以Pullulan为骨架材料的P-PEI是一种新的有潜在应用价值的非病毒基因载体.  相似文献   

11.
Nucleic acid drugs have great potential to treat many devastating aliments, but their application has been hindered by the lack of efficacious and nontoxic delivery vehicles. Here, a new library of poly(glycoamidoamine)s (D1-D4, G1-G4, and M1-M4) has been synthesized by polycondensation of esterified d-glucaric acid (D), dimethyl-meso-galactarate (G), and d-mannaro-1,4:6,3-dilactone (M) with diethylenetriamine (1), triethylenetetramine (2), tetraethylenepentamine (3), and pentaethylenehexamine (4). The stereochemistry of the carbohydrate hydroxyl groups and the number of amine units have been systematically changed in an effort to examine how the polymer chemistry affects the plasmid DNA (pDNA) binding affinity, the compaction of pDNA into nanoparticles (polyplexes), the material cytotoxicity, and the efficacy of nucleic acid delivery. The polymers with four secondary amines (D4, G4, and M4) between the carbohydrates were found to have the highest pDNA binding affinity and the galactarate polymers generally yielded the smallest polyplexes. Delivery studies with pDNA containing the firefly luciferase or beta-galactosidase reporter genes in BHK-21, HeLa, and HepG2 cells demonstrated that all of the poly(glycoamidoamine)s deliver pDNA without cytotoxicity. Polymers D4, G4, and M4 displayed the highest delivery efficiency, where G4 was found to be a particularly effective delivery vehicle. Heparin competition assays indicated that this may be a result of the higher pDNA binding affinity displayed by G4 as compared to D4 and M4. Polyplexes formed by polymers with weaker pDNA affinities may dissociate at the cell surface due to interactions with negatively charged glycosaminoglycans, which would cause a decrease in the number of polyplexes that are endocytosed.  相似文献   

12.
Lipid–DNA complexes (lipoplexes) are widely used, since several years, as gene carriers. However, their transfection efficiency, both in vitro and in vivo, depends, in a rather complex way, on different interconnected parameters, ranging from the chemical composition of the lipid components to the size and size distribution of the complexes and, moreover, to the composition of the suspending medium. In this paper, we have investigated the behavior of nine different commercially available transfection agents (liposomal and non-liposomal) and their lipoplexes, at different molar charge ratios and in different experimental conditions. The size and the time stability of the resulting lipoplexes were investigated by means of dynamic light scattering methods and their toxicity and transfection efficiency were assayed in vitro in a model tumor cell line (C6 rat glioma cell line). An attempt to correlate the different parameters governing the complex phenomenology observed has been made. Whereas all the formulations investigated display a low toxicity, that increases with the increase of the lipid–DNA molar charge ratio, the transfection efficiency markedly depends, besides the molar charge ratio, on the lipid composition and on the lipoplex size, in a rather correlated way. The aim of this work is to present, in a wide scenario, an example of the inter-correlation among the different parameters that influence the transfection efficiency of lipoplexes and to suggest the role exerted by the average size of the resulting aggregates in their overall effectiveness as carriers in gene therapy.  相似文献   

13.
Double-hydrophilic block copolymer (DHBC)-directed mineralization is investigated by dissipative particle dynamics (DPD) simulation. By mineralization, we refer to the formation of inorganic crystals from the solution. In the current study, the DHBCs are modeled as chains of A and B blocks with repulsion between unlike blocks, while the mineralization is approximated by aggregation of hydrophobic nanoparticles from the solution. Depending on the relative concentrations of nanoparticles and DHBC, dispersed spherical aggregates, hexagonally packed cylinders, and ordered lamellae structures are obtained. The structures formed are seen to be controlled by competing forces between aggregation of nanoparticles, the interaction of DHBC with nanoparticles, and the self-assembly of DHBC in the solution. The time evolutions of hexagonally packed cylinders and ordered lamellae are studied. For the development of cylinders, nanoparticles first aggregate into orientationally disordered small cylinders, then these cylinders slowly grow into hexagonally packed long cylinders. For the development of ordered lamellae, nanoparticles first form a disordered structure, then grow into disordered lamellae, and at last evolve into ordered lamellae. The simulation demonstrates that addition of DHBC can effectively control the aggregation of inorganic particles and lead to formation of a variety of nanostructures.  相似文献   

14.
Cationic gemini surfactants, N,N-bis(dimethylalkyl)-alpha,omega-alkanediammonium dibromide [C(m)H(2m+1)(CH(3))(2)N(+)(CH(2))(s)N(+)(CH(3))(2)C(m)H(2m+1) x 2 Br(-), or m-s-m], have proven to be effective synthetic vectors for gene delivery (transfection). Complexes (lipoplexes) of gemini compounds, where m = 12, s = 3, 12 and m = 18 : 1(oleyl), s = 2, 3, 6, with DNA have been investigated using isothermal titration calorimetry (ITC), dynamic light scattering (DLS), zeta potential, atomic force microscopy (AFM) and circular dichroism (CD) techniques. The results show that lipoplex properties depend on the structural properties of the gemini surfactants, the presence of the helper lipid dioleoylphosphatidylethanolamine (DOPE), and the titration sequence. ITC data show that the interaction between DNA and gemini surfactants is endothermic and the observed enthalpy vs. charge ratio profile depends upon the titration sequence. Isoelectric points (IP) of lipoplex formation were estimated from the zeta potential measurements and show good agreement with the reaction endpoints (RP) obtained from ITC. DLS data indicate that DNA is condensed in the lipoplex. AFM images suggest that the lipoplex morphology changes from isolated globular-like aggregated particles to larger-size aggregates with great diversity in morphology. This change is further accentuated by the presence of DOPE in the lipoplexes. The results are interpreted in terms of some current models of lipoplex formation.  相似文献   

15.
Bovine serum albumin(BSA) was modified through a facile synthesis method to increase its isoelectric point(pI) from 4.8 to 6.0.When pH is higher than 6.0,the protein shows a negative surface charge,on the contrary,the protein is positively charged.In this study,the charge-reversal modified BSA(crBSA) was utilized to assemble with the binary complexes of pDNA/poly(vinylpyrrolidone)-graft-poly(2-dimethylaminoethyl methacrylate)(pDNA/PVP-g-PDMAEMA) to shield the excess positive charges of complexes at physiological pH(pH 7.4).When the complex coated with crBSA located in the environment at endosomal pH(pH 5.0),the charge-reversal of crBSA led to the deviation of crBSA from polyplex by electrostatic repulsion,which would benefit the transfection of the target gene.The crBSA shows great potential for improving the transfection efficiency of pDNA/PVP-g-PDMAEMA.  相似文献   

16.
The supramolecular structural nature of some cationic liposomes-DNA complexes, currently used as vehicles in non-viral gene delivery, has been elucidated by recent X-ray diffraction experiments. The relationship between the chemico-physical properties of these self-assembled structures and their transfection efficiency is extensively studied. Here we report a first comprehensive structural study by using energy dispersive X-ray diffraction, of the complex DC-Chol--DOPE/DNA (3beta[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol dioleoylphosphatidylethanolamine/DNA), which has been classified as one of the most effective in in-vivo experiments. Our results show that DC-Chol--DOPE/DNA lipoplexes have a columnar inverted hexagonal structure, which is not influenced by the cationic liposome/DNA charge ratio. The transfection efficiency of C6 rat glioma cells by DC-Chol--DOPE/DNA lipoplexes and the toxicity of lipoplexes to cells are dramatically affected by cationic liposome/DNA weight ratio.It seems therefore that the lipoplex structures have not any influence on transfection efficiency and toxicity in our experimental system.  相似文献   

17.
In this study, we characterized the conventional physicochemical properties of the complexes formed by plasmid DNA (pDNA) and cationic liposomes (CL) composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (50/25/25% molar ratio). We found that these properties are nearly unaffected at the studied ranges when the molar charge ratio (R(±)) between the positive charge from the CL and negative charge from pDNA is not close to the isoneutrality region (R(±) = 1). However, the results from in vitro transfection of HeLa cells showed important differences when R(±) is varied, indicating that the relationships between the physicochemical and biological characteristics were not completely elucidated. To obtain information regarding possible liposome structural modifications, small-angle X-ray scattering (SAXS) experiments were performed as a function of R(±) to obtain correlations between structural, physicochemical, and transfection properties. The SAXS results revealed that pDNA/CL complexes can be described as being composed of single bilayers, double bilayers, and multiple bilayers, depending on the R(±) value. Interestingly, for R(±) = 9, 6, and 3, the system is composed of single and double bilayers, and the fraction of the latter increases with the amount of DNA (or a decreasing R(±)) in the system. This information is used to explain the transfection differences observed at an R(±) = 9 as compared to R(±) = 3 and 6. Close to the isoneutrality region (R(±) = 1.8), there was an excess of pDNA, which induced the formation of a fraction of aggregates with multiple bilayers. These aggregates likely provide additional resistance against the release of pDNA during the transfection phenomenon, reflected as a decrease in the transfection level. The obtained results permitted proper correlation of the physicochemical and structural properties of pDNA/CL complexes with the in vitro transfection of HeLa cells by these complexes, contributing to a better understanding of the gene delivery process.  相似文献   

18.
We have investigated the structural development during order-order transitions to the double-gyroid (DG) phase of nonionic surfactant/water systems based on two-dimensional small-angle x-ray scattering patterns from highly oriented ordered mesophases. The lamellar (L) to DG transition proceeds through two intermediate structures, a fluctuating perforated layer structure having ABAB stacking and a hexagonal perforated lamellar structure with ABCABC stacking (HPLABC). For a hexagonally packed cylinder (H) to DG transition, we also observed the HPLABC structure as the intermediate phase, thus the HPLABC is an entrance structure for the DG phase. The hexagonal perforated lamellar (HPL) structure consists of hexagonally packed holes surrounded by the planar tripods, and the transition from HPL structure to the DG phase proceeds by rotation of the dihedral angle of connected tripods. A geometrical consideration shows that large deformations of HPL planes are necessary to form the DG structure from the HPLABC structure, whereas the transition from a HPL structure with ABAB stacking (HPLAB) to the DG structure is straightforward. In spite of the topological constraints, the HPLABC structure is observed in the kinetic pathway to the DG structure.  相似文献   

19.
We employ dissipative particle dynamics (DPD) to examine the self-assembling behavior of A2-star-(B-alt-C) molecules in the melt and solution states. When these molecules are in the melts, we successfully observe various types of hierarchical structure-within-structures, such as A-formed spheres in the matrix formed by B and C alternating layers, hexagonally packed A-formed cylinders in the matrix with B and C segregated layers, B and C alternating layers-within-lamellae, coaxial B and C alternating domains within hexagonally packed BC-formed cylinders, and concentric BC-alternating domains within BC-formed spheres, by increasing the A composition. These hierarchical structures by varying the composition are reported theoretically for the first time in the copolymer systems consisting of the alternating blocks, and in good agreement with the most recent experimental work by Matsushita and co-workers (Macromolecules 2007 , 40, 4023). Generally speaking, the small-length-scale B and C segregated domains are in parallel to the large-length-scale structures for the melt case. While when a selective solvent is added, we find that varying the solvent selectivity and the amount of solvent can induce the molecules to form quite different morphological patterns, such as the so-called segmented worm like micelles.  相似文献   

20.
In an effort to probe the importance of endosomal protonation in pH-sensitive, cationic, lipid-mediated, non-viral gene delivery, we have designed and synthesized a novel cholesterol-based, endosomal pH-sensitive, histidylated, cationic amphiphile (lipid 1), its less pH-sensitive counterpart with an electron-deficient, tosylated histidine head group (lipid 2) as well as a third new cholesterol-based, cationic lipid containing no histidine head group (lipid 3). For all the novel liposomes and lipoplexes, we evaluated hysicochemical characteristics, including lipid:DNA interactions, global surface charge, and sizes. As anticipated, lipid 2 showed lower efficacies than lipid 1 for the transfection of 293T7 cells with the cytoplasmic gene expression vector pT7Luc at lipid:DNA mole ratios of 3.6:1 and 1.8:1; both lipids were greatly inhibited in the presence of Bafilomycin A1. This demonstrates the involvement of imidazole ring protonation in the endosomal escape of DNA. Conversely, endosome escape of DNA with lipid 3 seemed to be independent of endosome acidification. However, with nuclear gene expression systems in 293T7, HepG2, and HeLa cells, the transfection efficacies of lipid 2 at a lipid:DNA mole ratio of 3.6:1 were found to be either equal to or somewhat lower than those of lipids 1 and 3. Interestingly, at a lipid:DNA mole ratio of 1.8:1, lipids 2 and 3 were remarkably more transfection efficient than lipid 1 in both HepG2 and HeLa cells. Mechanistic implications of such contrasting relative transfection profiles are delineated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号