首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 115 毫秒
1.
CeO2和Pd在Ni/γ-Al2O3催化剂中的助剂作用   总被引:3,自引:0,他引:3  
采用脉冲微反技术研究了添加n型半导体氧化物CeO2及贵金属Pd对Ni/γ-Al2O3催化剂上CH4积炭/CO2消炭反应性能的影响,并运用BET、TPR、CO2-TPSR及氢吸附等技术对催化剂进行了表征.结果表明,n型半导体氧化物CeO2的添加可以降低Ni/γ-Al2O3催化剂上CH4裂解积炭活性,提高CO2消炭活性,添加少量贵金属Pd可以进一步改变载体Al2O3、助剂CeO2和活性组分Ni之间的相互作用,从而改善Ni/γ-Al2O3催化剂的抗积炭性能.通过Ni-Ce-Pd/γ-Al2O3催化剂上CH4积炭/CO2消炭模型对上述作用机制作出了新的解释.  相似文献   

2.
研究了废Al2O3基催化剂中Pt,Pd的ICP-AES测定新方法。以王水溶解样品,在HCl(5 95)介质中,用工作曲线法对废Al2O3基催化剂中的Pt,Pd直接进行测定,不需进行基体匹配。方法的检出限分别为:Pt 0.1μg/mL,P 0.045μg/mL;样品的加标回收率为Pt 95.2%-105.5%,Pd 95.3%-100.6%;RSD(n=6)均<9%。  相似文献   

3.
助剂对甲烷部分氧化催化剂Ni/α-Al2O3催化性能的影响   总被引:9,自引:0,他引:9  
用浸渍法制备了添加稀土La,Y及碱土金属Ca助剂的Ni系催化剂,用于甲烷部分催化剂合成气反应,结果表明同时添加适量的La,Y及碱土金属Ca助剂能明显提高Ni/α-Al2O3催化剂的催化活性和热稳定性。500小时寿命实验表明,12%Ni 30% 3%Ln/α-Al2O3(w/w)的活性保持稳定。XPS结果显示还原后和反应后的样品均存在Ni^0,Ni^0是催化剂的活性组分;Ca和Y的相互作用导致Y2O3向催化剂表面迁移。  相似文献   

4.
助剂对合成邻苯基苯酚Pt/γ-Al2O3催化剂性能的影响   总被引:3,自引:0,他引:3  
以K2SO4、K2CO3、KOH和KH2PO4为助剂对用于环己酮二聚(Dimer)脱氢合成邻苯基苯酚(OPP)的0.5%Pt/γ-Al2O3催化剂进行改性,考察了4种钾盐对生成OPP的收率和稳定性的影响.试验结果表明以K2SO4作助剂的催化剂合成OPP收率最高,可达93.7%.XRD表征结果表明Pt粒子高度分散,钾盐未与γ-Al2O3形成新的晶相.以NH3-TPD和CO2-TPD对催化剂表面酸碱性的测定表明:在催化剂上K含量相同的情况下,以K2SO4作助剂的催化剂表面酸量最低,表面碱量最高.在连续240h的运转过程中,以K2SO4作助剂的催化剂的活性稳定,OPP平均收率可达92%.以K2SO4作助剂的催化剂的高OPP选择性和稳定性主要与其较低的表面酸量有关.  相似文献   

5.
甲烷二氧化碳重整反应不仅可以将两种温室气体转化为更具有工业应用价值的合成气,而且反应产物中的H_2/CO比也比较适宜合成气的深加工过程,兼具环境效益和经济效益,因此受到广泛的关注与研究.但是,阻碍该过程工业化的主要问题在于反应中Ni基催化剂非常容易积碳,从而导致催化剂失活.近年来,甲烷二氧化碳催化重整领域的研究主要集中在反应机理和催化剂设计,其中大多数的研究结果表明,Ni基催化剂的抗积碳性能取决于反应过程中积碳速率与消碳速率之间的平衡.CO_2是该反应体系中唯一的氧源,因此Ni基催化剂的消碳能力在很大程度上取决于其对CO_2裂解活化能力的强弱.早期的文献中一般认为,CO_2的裂解活化与载体的Lewis碱性位点强弱相关,因此添加碱性氧化物助剂,比如MgO和CaO等,能够增强Ni基催化剂的碱性强度和CO_2吸附性能,有利于催化剂表面碳物种的转化,从而增强催化剂的稳定性.已有文献报道,添加微量MgO助剂(1 wt%)尽管没有影响Ni基催化剂的碱性强度,但是能够明显增强Ni基催化剂的稳定性,但没有对此结果给出明确的解释.在非均相催化研究领域中,活性金属与助剂在催化剂表面的分散性,是研究其催化作用的重要前提.大部分甲烷二氧化碳催化重整研究工作中,助剂的引入通常采用浸渍法,但是这种制备方法并不能有效保证助剂的分散度.本研究工作利用了水滑石材料的"记忆效应",将0.42 wt%Mg~(2+)引入到由Ni-Al水滑石前驱体焙烧后得到的Ni/Al_2O_3催化剂中.X射线能谱仪的结果表明,微量MgO助剂均匀分散在Ni/Al_2O_3催化剂表面上.经X射线衍射、CO_2程序升温脱附和H_2程序升温还原表征验证,添加微量的MgO助剂并没有对Ni晶粒尺寸、金属载体相互作用以及Al_2O_3载体表面碱性强度产生明显作用;然而甲烷二氧化碳重整活性评价测试和反应后催化剂的O2程序升温氧化实验结果显示,微量MgO助剂能明显增强Ni/Al_2O_3催化剂的稳定性,并且有效地阻碍了石墨碳在催化剂表面的形成.表面脉冲吸附实验结果证实,微量MgO助剂促进了CO_2在Ni颗粒表面的裂解活化,进而可以及时消除Ni金属表面由甲烷裂解产生的碳物种,防止其迁移、聚集和生成石墨碳.  相似文献   

6.
CeO2和Pd在Ni/γ-Al2O3催化剂中的助剂作用   总被引:6,自引:0,他引:6  
采用脉冲微反技术研究了添加n型半导体氧化物CeO2及贵金属Pd对Ni/γ Al2O3催化剂上CH4积炭/CO2消炭反应性能的影响,并运用BET、TPR、CO2 TPSR及氢吸附等技术对催化剂进行了表征.结果表明, n型半导体氧化物CeO2的添加可以降低Ni/γ Al2O3催化剂上CH4裂解积炭活性,提高CO2消炭活性,添加少量贵金属Pd可以进一步改变载体Al2O3、助剂CeO2和活性组分Ni之间的相互作用,从而改善Ni/γ Al2O3催化剂的抗积炭性能.通过Ni Ce Pd/γ Al2O3催化剂上CH4积炭/CO2消炭模型对上述作用机制作出了新的解释.  相似文献   

7.
MgO助剂对甲烷部分氧化Ni/Al2O3催化剂结构和性能的影响   总被引:2,自引:1,他引:2  
采用分步浸渍法制备了MgO改性的Ni/Al2O3催化剂,采用BET、XRD、H2 TPR、TEM和活性评价等研究方法,考察了MgO助剂对Ni/Al2O3催化剂物化性质和甲烷部分氧化制合成气反应性能的影响。实验结果表明,MgO助剂提高了催化剂镍物种的均一性,抑制了NiAl2O4尖晶石的形成,并且增强了镍物种与载体的相互作用,这与MgO、NiO形成固溶体及与Al2O3形成MgAl2O4有关。同时,适量的MgO助剂可以提高Ni物种在催化剂中分散度,并提高其有效利用率,改性后的催化剂在甲烷部分氧化反应中显示出较好的反应性能。过量的MgO助剂对催化剂的反应性能产生负面影响,MgO的碱性可以促进逆水煤气变换反应,从而导致H2选择性降低和CO选择性提高。  相似文献   

8.
助剂对Pd/γ-Al2 O3催化剂上NO选择催化还原的影响   总被引:1,自引:0,他引:1  
研究了含氧条件下钯催化剂上进行丙烯选择催化还原NO的反应,考察浸渍法制备的Pd/γ-Al2O3催化剂中加入碱(土)金属或稀土氧化物助剂对NO转化率的影响,并对催化剂进行了XRD表征及在氧化气氛中饱和吸附NO后的TPD研究.结果表明,助剂CeO2、 Li2O能较大幅度提高催化剂的低温活性,使NO的最高转化率增加1~3.5倍.Pd/CeO2-Al2O3、 Pd/Li2O-Al2O3催化剂有较高的Pd分散度及较强的NO解离吸附能力.并讨论了NO、 N2O、 NO2-和NO3-等吸附态物种在催化剂表面的形成及脱附特性对催化剂选择催化还原NO性能的影响.  相似文献   

9.
以三种不同铝源采用溶液燃烧法制备了系列Ni/Al_2O_3催化剂,通过XRD、H_2-TPR、NH_3-TPD、N_2吸附-脱附、TGDTG和TPH等分析方法对反应前后催化剂进行了表征,研究了铝源对Ni/Al_2O_3催化剂结构、表面性质及其CO_2-CH_4重整性能的影响。结果表明,以Al(NO_3)_3·9H_2O为铝源制备的NiNO-AlNO催化剂比表面积较大,达102 m~2/g;高温还原峰面积大,峰型更为弥散;且载体Al_2_O_3具有一定的结晶性。而以Al_2(SO_4)_3·18H_2O和AlCl_3·6H_2O为铝源制备的NiNO-AlSO和NiNO-AlCl催化剂,其载体以无定型Al_2O_3存在,活性组分Ni晶粒粒径大、分散性差,还原峰面积较小,与载体的相互作用较弱。其中,由于硫酸铝较为稳定,需要在更高温度下才能转化为Al_2O_3,且所制备NiNO-AlSO催化剂中残留有含硫物质,使得其表面酸性较强。评价结果显示,NiNO-AlNO催化剂活性较高,稳定性好,CH4转化率为31.21%,CO_2转化率为48.97%。积炭分析结果发现,NiNO-AlNO催化剂表面积炭量最少,沉积炭主要以无定型态存在,具有良好的抗积炭性能。  相似文献   

10.
11.
甲烷转化制备的合成气是合成液体燃料和含氧有机化合物的原料 .甲烷转化制合成气的方法有甲烷蒸汽重整、甲烷部分氧化和甲烷、二氧化碳重整 3种 [1~ 3] .对于 CH4/CO2 重整反应 ,调节进料比可制备出 H2 /CO≤ 1、富含 CO的合成气 ,它适于羰基合成和 F- T合成 .这种方法一方面充分利用碳资源 ,缓解能源危机 ;一方面可减少温室气体的排放 ,改善人类的居住环境 .目前倍受关注 .CH4/CO2 重整制合成气 ,Rh、Ru、Pd、Ir等贵金属有很高的活性和稳定性 [4] .但其价格昂贵 ,高温易流失 ,商业化困难 .Ni基催化剂的活性与贵金属相当 ,但它易积…  相似文献   

12.
The Catalytic performances for methane steam reforming reaction ofNi/Al_2O_3(commercial), Ni/Al_2O_3 (developed surface )and Ni/Al_2O_3-R_xO_y (R israre earth oxide) Catalysts were investigated by means of X-ray diffraction,TG, SEM/ X-ray analysis, pulse gas chromatography,BET and Mercuryporsiniter techniques. The distribution of rear earth oxides on the supports,themetal-support (additives) interaction and the influence of rare earth oxideadditives on the dispersion of active components,catulytic activities,variationof nickel crystallites size,CO chemisorption,formation of NiAl_2O_4 as well asthe reducibility of the catalysts were examined.The presence of rare earthoxides in the Ni/Al_2O_3 (developed surface) results in great improvement ofstubility through suppressing the growth of Ni crystallites,the oxidation of themetallic Ni and the formation of NiAl_2O_4. The effect of heavy rare earth oxidesis more distinct than that of the light ones.Strong metal support interaction(SMSI) exists in Ni/Al_2O_3- R  相似文献   

13.
The effect of electron beam irradiation on the CO2 reforming of methane over Ni/Al2O3 was investigated. The conversion rate of CO2 and CH4 forming H2 and CO using various catalysts irradiated with an absorbed dose greater than 2 MGy was 5–10% higher than when using an untreated catalyst. The Ni/O ratio on the catalyst surface increased after treatment with an electron beam, and was more prominent for catalysts with a higher Ni content. As such, based on XRD and XPS measurements, electron beam treatment was found to result in either the desorption of oxygen from NiO or the removal of OH groups from the outermost surface layer of the catalyst. In addition, the concentration of active sites, such as Ni2+ and NiO, or surface defects was also found to increase with the absorbed radiation dose, thereby increasing the conversion rate.  相似文献   

14.
Ni/Al2O3催化剂上甲烷部分氧化制合成气反应积炭的研究   总被引:5,自引:0,他引:5  
合成气制备;Ni/Al2O3催化剂上甲烷部分氧化制合成气反应积炭的研究  相似文献   

15.
以CO吸附红外光谱结合CO化学吸附、透射电镜和能量散射谱等手段,研究了Pt/Al2O3制备过程中还原方法对最终Pt粒子表面活性位分布、粒径大小和表面残余氯等表面性质的影响,重点考察了普通的气相氢气还原和甲酸钠水溶液还原两种方法的对比。结果表明,采用氢气气相还原时,Pt/Al2O3上Pt粒子表面台阶位和平台位比例基本不随焙烧温度而变;而采用甲酸钠水溶液还原时,Pt粒子表面台阶位所占比例随焙烧温度升高而提高。水的存在和还原条件剧烈这两个因素使得水相甲酸钠还原不利于Pt的分散,所得Pt/Al2O3上Pt的分散度比氢气气相还原所得要小。无论何种还原条件,水的存在都有利于Pt前躯体中的氯从Pt/Al2O3表面去除;而氢气气相还原所得催化剂表面则有大量残余氯存在。  相似文献   

16.
研究了Pt/Al2O3和Pt/CeO2/Al2O3催化剂对甲烷部分氧化制合成气反应的催化活性,发现Pt/CeO2/Al2O3显示了比Pt/Al2O3更高的甲烷转化率和合成气选择性。用H2TPR,H2TPD,SEM和XRD等手段和技术对催化剂进行了表征。CeO2与Pt之间存在较强的相互作用(SMSI),这种作用促进了Pt在催化剂表面的分散,抑制了Pt在催化剂表面的迁移,大大降低了催化剂在反应中的完全燃烧活性,提高了催化剂的部分氧化活性和选择性,避免了因催化剂床层局部温度过高而导致催化剂活性下降或失活,提高了催化剂的稳定性。同时,在反应过程中,CeO2通过促进水蒸气变换反应(WGSR)的进行使反应体系迅速达到平衡,提高了催化剂对H2的选择性。  相似文献   

17.
以MCM-41为载体, 采用程序升温还原法制备了含有少量Pt的Ni-P/MCM-41催化剂, 并用氢气程序升温还原(H2-TPR)、 X射线衍射(XRD)、 N2吸附比表面积、 X射线光电子能谱(XPS)和透射电子显微镜(TEM)对催化剂的结构和性能进行了表征. 考察了P/Ni摩尔比及Pt含量对Ni-P/MCM-41催化剂催化二苯并噻吩(DBT)加氢脱硫(HDS)性能的影响. 结果表明, Pt能降低Ni2P催化剂的还原温度, 并有助于Ni2P相的生成, 抑制团聚现象, 提高催化剂的HDS活性. 当Pt的质量分数为0.6%, P/Ni摩尔比为2时, 催化剂具有最佳加氢脱硫活性, 在340 ℃, 3.0 MPa, 氢油体积比为500, 质量空速(WHSV)为2.0 h-1的条件下, 二苯并噻吩转化率为100%, 且催化剂加氢脱硫活性在120 h内基本保持稳定.  相似文献   

18.
添加钠对低镍甲烷化催化剂结构性能的影响   总被引:2,自引:2,他引:2  
胡常伟  吕刚 《分子催化》1992,6(4):263-270
用活性测试、XRD和EXAFS方法研究了一系列含Ni 6wt%、添加不同量Na助剂的γ-Al_2O_3担载Ni甲烷化催化剂的结构性能。结果表明:Ni与Al_2O_3有较强的相互作用。添加不同量的Na助剂能增强或削弱这种作用,从而影响催化剂宏观性能,Na在Al_2O_3上是高度分散的。它的影响是通过改变载体表面性能从而改变Ni的状态及其分布,Ni的分散度和Ni-Al_2O_3相互作用而完成的。适量Na可提高Ni的分散度,优化Ni-Al_2O_3相互作用,从而提高催化剂活性。过量Na则会加强Ni-Al_2O_3相互作用,或者造成NiO自身聚集形成NiO晶相,从而降低Ni利用率,使催化剂活性降低。  相似文献   

19.
异丁烷在Pt-Sn-K/Al2O3上的脱氢反应   总被引:3,自引:0,他引:3  
负载催化剂;异丁烷在Pt-Sn-K/Al2O3上的脱氢反应  相似文献   

20.
在连续流动的固定床反应装置上,考察了Ni/Al2O3催化剂上CH4三重整反应中催化剂床层的温度分布。实验在常压、750℃~950℃、2000h-1~20000h-1下进行,研究了外控炉温、空速和进料组成对催化剂床层温度分布的影响。结果表明,催化剂床层中的温度梯度较甲烷部分氧化反应平缓,在CH4/CO2/H2O/O2=50/12.5/12.5/25(摩尔比)、20000h-1下,催化剂床层中入口处温度比炉温高约80℃,出口处温度与器壁温度相当。空速越低,催化剂床层入口处温度(tmax)与炉温之差Δtmax越小(20000h-1时,Δtmax=80℃;2000h-1时,Δtmax=30℃)。当原料气中不含O2时,催化剂床层入口处没有观测到温度骤升的现象。催化剂床层温度分布出现“低谷”现象,温度最低点(tmin)比炉温低30℃~40℃。根据温度分布曲线,大体可将催化剂床层分为三个区域:富氧区、贫氧区和无氧区。富氧区内只发生燃烧反应,贫氧区内发生重整反应和部分氧化反应,无氧区内只发生重整反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号