首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Murzin  D. Yu.  Mäki-Arvela  P.  Salmi  T. 《Kinetics and Catalysis》2003,44(3):323-333
Asymmetric catalysis plays an important role in present-day production of pharmaceuticals. It can be predicted that enantioselective catalysis will dominate in the future, replacing conventional stoichiometric methods. Heterogeneous catalysts offer several advantages compared to their homogeneous counterparts. In the present review mechanisms of asymmetric heterogeneous catalysis are discussed and the different ways of chirality transfer are addressed. Enantioselection is possible over chiral supports and chiral metals exhibiting intrinsic chirality, as well as over modified metal supported catalysts. The interactions between a reactant and a modifier are very specific being critical for achieving high enantioselectivities.  相似文献   

2.
The adsorption rates onto a range of platinum single-crystal surfaces of key species involved in the proline-directed heterogeneous enantioselective hydrogenation of isophorone were investigated by electrochemical means. Specifically, the uptakes of the prochiral reactant (isophorone), the chiral hydrogenation product (3,3,5-trimethylcyclohexanone), and the chiral directing agent ((R)- and (S)-proline) were examined. The effects of R,S chiral kink sites on the adsorption of (R,S)-proline were also studied. The reactant adsorbs approximately 105 times faster than the chiral modifier so that under conditions of competitive adsorption the latter is entirely excluded from the metal surface. Supplementary displacement and reaction rate measurements carried out with practical Pd/carbon catalysts show that under certain reaction conditions isophorone quickly displaces preadsorbed proline from the metal surface. Thus both kinetics and thermodynamics ensure that the chiral modifier can play no role in any surface-mediated process that leads to enantiodifferentiation. These results are fully consistent with the recent proposal1 that the crucial step leading to enantiodifferentiation occurs in the solution phase and not at the metal surface. In addition, it is found that there is no preferred diastereomeric interaction between (R,S)-proline and R,S step kink sites on Pt{643} and Pt{976}, implying that such sites do not play a role in determining the catalytic behavior of supported metal nanoparticles.  相似文献   

3.
陈婷  万立骏 《中国科学B辑》2009,39(10):1102-1114
表面手性现象是物理化学科学研究的重要内容之一,研究表面手性现象,将有助于对分子吸附,分子间相互作用,多相手性催化,手性分离与拆分等科学和实际应用问题的深入理解.在表面手性现象和手性结构的研究中,扫描隧道显微技术(STM)发挥着重要作用,成为研究表面手性现象的重要手段.该综述文章以本课题组近年已发表的研究工作为主,重点介绍利用STM研究固体表面分子吸附组装体系中关于手性问题的部分结果,包括固有手性分子在固体表面的吸附,非手性分子组装形成手性结构,以及表面手性结构的转化和调控.还结合实验结果分析探讨了表面手性的结构形成、放大和传递等,展望了该研究领域的发展趋势.  相似文献   

4.
On the basis of reviewed works and our experiences we propose that during the reduction of the surface the adsorbing substrates and the chiralcompounds induce the formation of chiral surface sites in dia- or enantioselective hydrogenation reactions catalyzed by precious metal  相似文献   

5.
A strategy for expanding the utility of chiral pyridine‐2,6‐bis(oxazoline) (pybox) ligands for asymmetric transition metal catalysis is introduced by adding a bidentate ligand to modulate the electronic properties and asymmetric induction. Specifically, a ruthenium(II) pybox fragment is combined with a cyclometalated N‐heterocyclic carbene (NHC) ligand to generate catalysts for enantioselective transition metal nitrenoid chemistry, including ring contraction to chiral 2H‐azirines (up to 97 % ee with 2000 TON) and enantioselective C(sp3)?H aminations (up to 97 % ee with 50 TON).  相似文献   

6.
《中国化学快报》2022,33(12):5092-5095
Highly enantioselective Rh-catalyzed partial hydrogenation of unprotected simple 2-alkyl-5-aryl-disubstituted pyrroles has been successfully developed, generating a series of chiral 1-pyrroline derivatives generally with excellent results (95%–99% yields, 91%–96% ee). Moreover, 2,5-aryl-1H-pyrroles were hydrogenated well in high yields and good enantioselectivities. This efficient protocol features easily accessible substrates, wide substrate scope, well functional group compatibility, commercially available rhodium precursor and chiral ligand. It provides a versatile route to access chiral 1-pyrroline derivatives that are of great importance in organic synthesis and pharmaceutical chemistry.  相似文献   

7.
The enantioselective surface chemistry of chiral R-2-bromobutane was studied on the naturally chiral Cu(643)R&S and Cu(531)R&S surfaces by comparing relative product yields during temperature-programmed reaction spectroscopy. Molecularly adsorbed R-2-bromobutane can desorb molecularly or debrominate to form R-2-butyl groups on the surfaces. The R-2-butyl groups react further by beta-hydride elimination to form 1- or 2-butene or by hydrogenation to form butane. Temperature-programmed reaction spectroscopy was used to quantify the relative yields of the various reaction products. At low coverages of R-2-bromobutane on Cu(643)R&S and Cu(531)R&S, the surface chemistry is not enantioselective. At monolayer coverage, however, the product yields indicate that the R-2-bromobutane decomposition reaction rates are sensitive to the handedness of the two chiral surfaces. The impact of surface structure on enantioselectivity was examined by studying the chemistry of R-2-bromobutane on both Cu(643)R&S and Cu(531)R&S. The selectivity of R-2-bromobutane desorption versus debromination is enantiospecific and differs significantly from Cu(643) to Cu(531). The selectivity of the R-2-butyl reaction by beta-hydride elimination versus hydrogenation is only weakly enantiospecific and is similar on both the Cu(643) and Cu(531) surfaces. These results represent the first quantitative observations of enantioselectivity in reactions with well-known mechanisms probed using a simple adsorbate on naturally chiral metal surfaces.  相似文献   

8.
The development of catalytic processes that effect enantioselective bond formation under mild conditions is an important and challenging task in modern chemical synthesis. In this connection, chiral C2-symmetric ansa-metallocenes (bridged metallocenes) have found notable applications as catalysts. This article discusses the chemistry of this class of chiral metallocene complexes with regard to their utility in catalytic and enantioselective C? C and C? H bond formation reactions. In addition, where applicable, a brief comparison with other related catalytic enantioselective processes is offered. Many of the reactions effected with high levels of enantioselectivity by catalytic amounts of these complexes are of great significance to the preparation of new materials and in the synthesis of therapeutic agents. For example, zirconocene complexes readily catalyze the enantioselective addition of alkylmagnesium halides to alkenes, and cationic zirconocene complexes may promote the highly stereoregulated copolymerization of terminal alkenes. Furthermore, the related chiral titanocenes are involved in an impressive range of useful asymmetric catalytic reactions, including the enantioselective hydrogenation of olefins and reduction of imines or ketones. This review attempts to bring together the practical aspects of the use of [(ebthi)M] complexes of Group 4 transition metals (catalyst synthesis and resolution), outline the manner in which the C2-symmetric chiral ligands are believed to initiate stereoselective bond formation, and highlight the aspects of this chemistry that are less well understood and require further research.  相似文献   

9.
Central chirality is an important chiral element used in the design of chiral ligands and catalysts. Mostly, the attention of organic chemists is focused on developing of chiral ligands with stable stereogenic centers. However, the N-chirality in chiral ligand design has been rarely explored due to its flexibility. Here we demonstrate the design, synthesis, and application of a class of simple P,N-ligands with flexible N-chirality and their derived iridium complexes with fixed N-chiral stereocenters. Both fixed configurations of the N-stereocenter of the iridium complexes could be selectively formed from the same chiral ligand. This pair of diastereoisomeric iridium complexes showed good performance in the enantiodivergent asymmetric hydrogenation of exocyclic α,β-unsaturated lactams. The N−H group plays an impressive role in catalytic activity. Computational studies emphasized the importance of N-chirality and N−H group.  相似文献   

10.
The adsorption of 1-(1-naphthyl)ethylamine (NEA) on platinum surfaces has been characterized by reflection-absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) both under ultrahigh vacuum and in situ from liquid solutions. The main focus of this study was to identify the mechanism by which single enantiomers of NEA bestow chirality on the platinum surface. Evidence was acquired for both of the prevailing explanations available in the literature for the NEA behavior: formation of supramolecular chiral templates and complexation of individual modifiers with the reactant. Indeed, TPD titrations of NEA-modified Pt(111) using propylene oxide (PO) as a chiral probe point to a relative enhancement in the adsorption of one enantiomer over the other at intermediate NEA coverages, which is the behavior expected from the templating mechanism. However, a difference in adsorption energetics was also observed. Both the TPD and RAIRS data suggest possible interactions between the adsorbed NEA and adjacent PO that differ according to the relative chirality of the two compounds. The NEA uptake from solution displays additional enantioselectivity, in particular when the adsorption of enantiopure compounds is compared with that of racemic mixtures, and also points to possible adsorption changes induced by ethyl pyruvate, a common reactant in chiral hydrogenation processes.  相似文献   

11.
A series of chiral diphosphine ligands denoted as PQ-Phos was prepared by atropdiastereoselective Ullmann coupling and ring-closure reactions. The Ullmann coupling reaction of the biaryl diphosphine dioxides is featured by highly efficient central-to-axial chirality transfer with diastereomeric excess >99%. This substrate-directed diastereomeric biaryl coupling reaction is unprecedented for the preparation of chiral diphosphine dioxides, and our method precludes the tedious resolution procedures usually required for preparing enantiomerically pure diphosphine ligands. The effect of chiral recognition was also revealed in a relevant asymmetric ring-closure reaction. The chiral tether bridging the two aryl units creates a conformationally rigid scaffold essential for enantiofacial differentiation; fine-tuning of the ligand scaffold (e.g., dihedral angles) can be achieved by varying the chain length of the chiral tether. The enantiomerically pure Ru- and Ir-PQ-Phos complexes have been prepared and applied to the catalytic enantioselective hydrogenations of alpha- and beta-ketoesters (C=O bond reduction), 2-(6'-methoxy-2'-naphthyl)propenoic acid, alkyl-substituted beta-dehydroamino acids (C=C bond reduction), and N-heteroaromatic compounds (C=N bond reduction). An excellent level of enantioselection (up to 99.9% ee) has been attained for the catalytic reactions. In addition, the significant ligand dihedral angle effects on the Ir-catalyzed asymmetric hydrogenation of N-heteroaromatic compounds were also revealed.  相似文献   

12.
The development of heterogeneous catalysts for asymmetric synthesis is one of the most challenging topics in chemistry, as it allows obtaining enantiomerically pure compounds. Recently, metal layers incorporating molecular chiral cavities, obtained by electroreduction of a metal source in the simultaneous presence of a non-ionic surfactant and asymmetric molecules, have been proposed for a wide range of applications, including enantioselective electroanalysis and electrosynthesis, as well as chiral separation. In contrast to this previous work, solely based on electrochemical phenomena, herein we designed and employed nanostructured chiral encoded Pt−Ir alloys, supported on high surface area nickel foams, as heterogeneous catalysts for the asymmetric hydrogenation of aromatic ketones. Fine-tuning the experimental conditions allows achieving very high enantioselectivity (>80%), combined with improved catalyst stability.  相似文献   

13.
Enantioselectivity in heterogeneous catalysis strongly depends on the chirality transfer between catalyst surface and all reactants, intermediates, and the product along the reaction pathway. Herein we report the first enantioselective on-surface synthesis of molecular structures from an initial racemic mixture and without the need of enantiopure modifier molecules. The reaction consists of a trimerization via an unidentified bonding motif of prochiral 9-ethynylphenanthrene (9-EP) upon annealing to 500 K on the chiral Pd3-terminated PdGa{111} surfaces into essentially enantiopure, homochiral 9-EP propellers. The observed behavior strongly contrasts the reaction of 9-EP on the chiral Pd1-terminated PdGa{111} surfaces, where 9-EP monomers that are in nearly enantiopure configuration, dimerize without enantiomeric excess. Our findings demonstrate strong chiral recognition and a significant ensemble effect in the PdGa system, hence highlighting the huge potential of chiral intermetallic compounds for enantioselective synthesis and underlining the importance to control the catalytically active sites at the atomic level.  相似文献   

14.
Enantioselectivity in heterogeneous catalysis strongly depends on the chirality transfer between catalyst surface and all reactants, intermediates, and the product along the reaction pathway. Herein we report the first enantioselective on‐surface synthesis of molecular structures from an initial racemic mixture and without the need of enantiopure modifier molecules. The reaction consists of a trimerization via an unidentified bonding motif of prochiral 9‐ethynylphenanthrene (9‐EP) upon annealing to 500 K on the chiral Pd3‐terminated PdGa{111} surfaces into essentially enantiopure, homochiral 9‐EP propellers. The observed behavior strongly contrasts the reaction of 9‐EP on the chiral Pd1‐terminated PdGa{111} surfaces, where 9‐EP monomers that are in nearly enantiopure configuration, dimerize without enantiomeric excess. Our findings demonstrate strong chiral recognition and a significant ensemble effect in the PdGa system, hence highlighting the huge potential of chiral intermetallic compounds for enantioselective synthesis and underlining the importance to control the catalytically active sites at the atomic level.  相似文献   

15.
An achiral oligo(p-phenylene vinylene) derivative with a ureido-triazine hydrogen bonding unit self-assembles into rows of hydrogen bonded dimers at the liquid/solid interface. Scanning tunneling microscopy reveals the formation of chiral domains, but overall, the surface remains racemic. Addition of a chiral auxiliary which is able to interact with the dimers through hydrogen bonding, showed that global organizational chirality could be achieved since a majority of the domains show the same handedness. After removing the chiral auxiliary with a volatile solvent, the global organizational chirality could be trapped, revealing a memory effect. With this straightforward supramolecular approach, we were able to create a chiral surface with preferred handedness composed of achiral molecules at the air/solid interface.  相似文献   

16.
We examine how postsynthesis nanoparticle ligand shell modifications as a general approach can help in the understanding of currently proposed mechanisms for gold nanoparticle chirality. We compare the CD response of chirally decorated mixed-monolayer-protected gold nanoparticles synthesized in situ with quasi-identical gold nanoparticles either prepared by place exchange reactions or subjected to an aqueous base, resulting in partial hydrolysis and simultaneous partial racemization. We find that the CD response at wavelengths where the free chiral ligand does not absorb strongly depends on the preparation conditions, i.e., in situ synthesis vs place exchange, and that postsynthesis racemization of the chiral ligand produces racemic nanoparticles with no CD response, i.e., no induction of a chiral bias during reductive nanoparticle formation. Considering all experimental results for the described gold nanoparticle system with a C12H24 spacer between the nanoparticle surface and chiral center, the so-called "vicinal effect" with the formation of a supramolecular assembly of the chiral moieties seems to be active. Finally, we argue that postsynthesis nanoparticle ligand shell modifications such as racemization and/or place exchange reactions are very powerful tools to unravel contributions of the different gold nanoparticle chirality mechanisms.  相似文献   

17.
Efficient and generic enantioselective discrimination of various chiral alcohols is achieved by using surface‐enhanced Raman scattering (SERS) spectroscopy through charge–transfer (CT) contributions. The relative intensities of the peaks in the SERS spectra of a chiral selector are strongly dependent on the chirality of its surroundings. This highly distinct spectral discrepancy may be due to the tendency of chiral isomers to form intermolecular hydrogen‐bonding complexes with the chiral selector in different molecular orientations, resulting in different CT states and SERS intensities of the adsorbates in the system. This study opens a new avenue leading to the development of novel enantiosensing strategies. A particular advantage of this approach is that it is label‐free and does not employ any chiral reagents, including chiral light.  相似文献   

18.
A palladium‐catalyzed enantioselective C H functionalization of indoles was achieved with an axially chiral 2,2′‐bipyridine ligand, thus providing the desired indol‐3‐acetate derivatives with up to 98 % ee. Moreover, the reaction protocol was also effective for asymmetric O H insertion reaction of phenols using α‐aryl‐α‐diazoacetates. This represents the first successful application of bipyridine ligands with axial chirality in palladium‐catalyzed carbene migratory insertion reactions.  相似文献   

19.
20.
The heteroleptic dirhodium paddlewheel catalyst 7 with a chiral carboxylate/acetamidate ligand sphere is uniquely effective in asymmetric [2+1] cycloadditions with α-diazo-α-trimethylstannyl (silyl, germyl) acetate. Originally discovered as a trace impurity in a sample of the homoleptic parent complex [Rh2((R)-TPCP)4] ( 5 ), it is shown that the protic acetamidate ligand is quintessential for rendering 7 highly enantioselective. The -NH group is thought to lock the ensuing metal carbene in place via interligand hydrogen bonding. The resulting stannylated cyclopropanes undergo “stereoretentive” cross coupling, which shows for the first time that even chiral quarternary carbon centers can be made by the Stille–Migita reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号