首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
介绍了溶胶–凝胶法制备有机/无机杂化材料的原理和基本过程,杂化材料的制备方法及对材料性能的影响,概述了杂化材料在结构材料、光学材料及其它材料中的应用研究。  相似文献   

2.
水凝胶微球即尺寸较小的球形水凝胶,除了凝胶特性外,其特点主要是具有较小的尺寸和球形形貌。由于其网络结构和快速的刺激响应性,使其作为模板制备具有独特性能的杂化材料而备受关注。本文主要从几个方面阐述了以微凝胶为基质制备杂化材料的方法及其应用。包括了磁性金属氧化物-凝胶杂化材料、金属单质-凝胶杂化材料、生物活性-凝胶杂化材料及功能化的球形和膜状杂化材料,最后介绍了本实验室以微凝胶为基质制备表面图案化杂化材料的方法。  相似文献   

3.
有机硅烷偶联剂在新材料中的一些特殊用途   总被引:12,自引:0,他引:12  
讨论了常用的有机硅烷偶联剂,在溶胶-凝胶法制备有机-无机杂化材料的时的化学反应,作用及使用方法,并与传统的应用进行了比较,对相关杂化材料的制备性能作了简要介绍。  相似文献   

4.
近年来,杂化纳米材料的出现极大地拓展了纳米材料的应用范围,其特殊的结构、性能、尺寸和形貌使其不仅保持了各组分材料的特性及功能,更涌现了不同于各组分材料所不具备的新颖的、多样化的特殊性能和应用潜能,因此其制备方法和性能应用已经成为了研究热点.运用纳米技术将贵金属纳米粒子与其他性能优异的物质结合形成的贵金属杂化纳米材料被广泛运用到电化学、光催化、免疫传感、生物催化和医药化学等领域.本文综述了贵金属杂化纳米材料的制备方法、结构组成、性能特点、应用前景以及最新的发展趋势,重点介绍了贵金属杂化纳米材料的合成及应用.  相似文献   

5.
UV固化丙烯酸酯化有机硅及杂化材料的研究与应用   总被引:2,自引:0,他引:2  
丙烯酸酯化有机硅及杂化材料因兼具有机硅材料的优异性能和光固化的高效、节能及环保等特点而得到广泛的应用。文章综述了光敏性丙烯酸酯化有机硅单体的种类、结构特点及其制备方法,分析了紫外光(UV)固化后聚合物及其杂化材料的性能,介绍了它们的研究与应用现状及其发展前景。  相似文献   

6.
有机/无机杂化材料因其独特、优异的结构和性能已经成为目前材料领域的研究热点,硫醇-烯/炔点击化学是近年发展起来的一类新型点击化学,以其反应条件温和、速率快、产率高、产物容易分离以及高度选择性等优点受到国内外研究者的广泛关注。本文综述了近年来硫醇-烯/炔点击化学制备有机/无机杂化材料的研究进展,重点介绍了利用硫醇-烯/炔点击化学制备硅类、碳类、金属及金属氧化物类有机/无机杂化材料,并归纳了这些有机/无机杂化材料在生物医用、环境保护、光电材料等方面的应用,最后展望了硫醇-烯/炔点击化学制备有机/无机杂化材料未来的发展方向。  相似文献   

7.
一维杂化纳米材料以其独特的物理化学性质,在电学、光学、催化等领域得到了广泛的应用。 其制备方法对一维杂化纳米材料性能的改变和调控显得至关重要。 模板法作为一种简单而普适的合成工艺,近几年来被广泛应用于纳米结构和纳米阵列的合成。 本文主要介绍了阳极氧化铝(AAO)模板法制备一维杂化纳米材料整体情况、AAO模板结合其他技术材制备材料的方法、一维杂化纳米材料在刺激响应性器件、能量存储与转换器件、催化等众多领域的应用。  相似文献   

8.
可聚合纳米无机氧化物杂化材料在紫外光固化涂料中具有较好的分散性能.与涂料中的单体和预聚物进行光聚合形成有机/无机杂化网络结构的聚合物,从而提高涂料固化膜的热稳定性能、硬度和耐磨性能等,在紫外光固化涂料的制备方面有着广阔的应用前景.目前,该类杂化材料主要采用硅烷偶联剂改性、化学接枝改性和溶胶一凝胶方法制备.本文就可聚合纳...  相似文献   

9.
非共价键合聚酯/SiO2杂化材料的制备与性能   总被引:2,自引:0,他引:2  
非共价键合聚酯/SiO2杂化材料的制备与性能;聚己内酯;有机无机杂化;溶胶-凝胶;透明材料  相似文献   

10.
以碳纳米纤维(CNFs)作为负载基体和反应器采用静电纺丝技术和碳化工艺生长和调控二硫化钼(MoS_2)纳米片。通过改变前驱体溶液浓度来调控纳米片的形貌和结构,利用MoS_2纳米片的高催化活性和CNFs高比表面积、良好的稳定性以及高电导率的协同作用,研究不同形貌和结构的杂化纳米材料在电催化析氢方面的应用,探索杂化材料形貌与性能之间的潜在规律。运用多种分析测试技术对制备得到的纳米杂化材料进行表征,并对所制备的MoS_2/CNFs杂化材料的电催化析氢性能(HER)进行研究,研究表明近似皮芯结构的MoS_2/CNFs-10杂化材料的电催化析氢性能最好,初始析氢过电位在220 mV,Tafel斜率为110m V·dec~(-1)。  相似文献   

11.
The mechanical properties of hybrid framework materials, including both nanoporous metal-organic frameworks (MOFs) and dense inorganic-organic frameworks, are discussed in this critical review. Although there are relatively few studies of this kind in the literature, major recent advances in this area are beginning to shed light on the fundamental structure-mechanical property relationships. Indeed research into the mechanical behavior of this important new class of solid-state materials is central to the design and optimal performance of a multitude of technological applications envisaged. In this review, we examine the elasticity of hybrid frameworks by considering their Young's modulus, Poisson's ratio, bulk modulus and shear modulus. This is followed by discussions of their hardness, plasticity, yield strength and fracture behavior. Our focus is on both experimental and computational approaches. Experimental work on single crystals and amorphized monoliths involved primarily the application of nanoindentation and atomic force microscopy to determine the elastic moduli and hardness properties. The compressibility and bulk moduli of single crystals and polycrystalline powders were studied by high-pressure X-ray crystallography in the diamond anvil cell, while in one instance spectroscopic ellipsometry has also been used to estimate the elastic moduli of MOF nanoparticles and deposited films. Theoretical studies, on the other hand, encompassed the application of first principles density-functional calculations and finite-temperature molecular dynamics simulations. Finally, by virtue of the diverse mechanical properties achievable in hybrid framework materials, we propose that a new domain be established in the materials selection map to define this emerging class of materials (137 references).  相似文献   

12.
1 Introduction Nonlinear optical materials(NLO) have drawn a great intrest of some scholars and scientists in the last dacades because of their tremendous  相似文献   

13.
Functional hybrid materials on the basis of inorganic hosts and ionic liquids (ILs) as guests hold promise for a virtually unlimited number of applications. In particular, the interaction and the combination of properties of a defined inorganic matrix and a specific IL could lead to synergistic effects in property selection and tuning. Such hybrid materials, generally termed ionogels, are thus an emerging topic in hybrid materials research. The current article addresses some of the recent developments and focuses on the question why silica is currently the dominating matrix used for (inorganic) ionogel fabrication. In comparison to silica, matrix materials such as layered simple hydroxides, layered double hydroxides, clay-type substances, magnetic or catalytically active solids, and many other compounds could be much more interesting because they themselves may carry useful functionalities, which could also be exploited for multifunctional hybrid materials synthesis. The current article combines experimental results with some arguments as to how new, advanced functional hybrid materials can be generated and which obstacles will need to be overcome to successfully achieve the synthesis of a desired target material.  相似文献   

14.
Copper(I) halide organic-inorganic hybrid luminescent materials have many advantages, such as diverse structure, facile synthesis, high luminescent efficiency, tunable optical performance, etc., and show a broad application prospect in energy-saving lighting, display and other fields. However, compared with commercial rare-earth-metal-based phosphors, the reported hybrids generally suffer from poor stability and low luminescent efficiency, which are the bottleneck problem of their practical application. With the aim of developing high-performance organic-inorganic hybrid luminescent materials, a new synthesis strategy has been reported. This strategy can systematically design and synthesis copper(I) halide ionic hybrid structures by combining the covalent bonding and ionic bonding between inorganic and organic components into one structure, and use their synergistic effect to optimizing their properties. This design method is expected to develop high-performance organic-inorganic hybrid luminescent materials, promote the in-depth understanding of this field, and provide new ideas for the optimization of other types of hybrid materials.  相似文献   

15.
Organic/inorganic hybrid materials prepared by the sol–gel approach have rapidly become a fascinating new field of research in materials science. The explosion of activity in this area in the past decade has made tremendous progress in both the fundamental understanding of the sol–gel process and the development and applications of new organic/inorganic hybrid materials. Polymer-inorganic nanocomposite present an interesting approach to improve the separation properties of polymer material because they possess properties of both organic and inorganic such as good permeability, selectivity, mechanical strength, and thermal and chemical stability. Composite material derived by combining the sol–gel approach and organic polymers synthesis of hybrid material were the focus area of review It has also been demonstrated in this review that a more complete understanding of their structure–property behavior can be gained by employing many of the standard tools that are utilized for developing similar structure–property relationships of organic polymers. This review article is introductory in nature and gives introduction to composite materials/nanocomposite, their applications and the methods commonly employed for their synthesis and characterization. A brief literature survey on the polysaccharide templated and polysaccharide/protein dual templated synthesis of silica composite materials is also presented in this review article.  相似文献   

16.
Twenty-one hybrid materials incorporating cobalt(III) corrole complexes were synthesized by a sol-gel process or by grafting the metallocorrole onto a mesostructured silica of the SBA-15 type. All the materials show an almost infinite selectivity for carbon monoxide with respect to dinitrogen and dioxygen in the low-pressure domain where the chemisorption phenomenon is predominant. This peculiar property is of prime importance for an application as a CO sensor. The selectivity slightly decreases at high pressures where nonselective physisorption phenomena mainly occur. The percentage of active sites for CO chemisorption ranges from 22 to 64 %. This low percentage may be attributable to interactions between the cobalt(III) corroles with silanol or siloxane groups remaining at the surface of the materials which prevent further coordination of the CO molecule. Notably, the most efficient materials are those prepared in the presence of a protecting ligand (pyridine) during the gelation or the grafting process. The removal of this ligand after the gelation process releases a cavity around the cobalt ion that favors the coordination of a carbon monoxide molecule. The CO adsorption properties of the SBA-15 hybrid were not affected over a period of several months thus indicating a high stability of the material. Conversely, the xerogel capacities slowly decrease owing to the evolution of the material structure.  相似文献   

17.
白光有机发光二极管(white organic light-emitting diodes,WOLEDs)在全色显示、固态照明以及背光源等领域有巨大的应用前景,其研究备受关注.其中,荧光/磷光混合型WOLEDs因兼具荧光材料的长寿命和磷光材料的高效率,被认为是目前最有希望实现照明应用的器件结构.荧光/磷光混合型WOLEDs最重要的问题是要解决荧光材料的单线态激子和磷光材料的三线态激子的协同发光.为了避免单线态激子和三线态激子的相互猝灭问题,必须设计有效的器件结构.本文以两种不同三线态能级的蓝光荧光材料为研究对象,介绍了不同高性能荧光/磷光混合型WOLEDs的结构设计与性能.研究表明,载流子传输平衡的高效结构设计和激子分布宽范围内的有效调控是实现高性能荧光/磷光混合型WOLEDs的关键.  相似文献   

18.
Fluorescent polymeric materials such as hydrogels and particles have been attracting attention in many biomedical applications including bio-imaging, optical sensing, tissue engineering, due to their good biocompatibility, biodegradability, and advanced optical property. This review article aims at summarizing recent progress in fluorescent hydrogels and particles based on natural polymers or natural-synthetic hybrid polymers as the building blocks with a concentration on their bio-imaging-related applications. The challenges and future perspectives for the development of natural or natural-synthetic hybrid polymer-based fluorescent hydrogels and particles are also presented.  相似文献   

19.
Photochromic organic-inorganic hybrid materials   总被引:1,自引:0,他引:1  
Photochromic organic-inorganic hybrid materials have attracted considerable attention owing to their potential application in photoactive devices, such as optical memories, windows, photochromic decorations, optical switches, filters or non-linear optics materials. The growing interest in this field has largely expanded the use of photochromic materials for the purpose of improving existing materials and exploring new photochromic hybrid systems. This tutorial review summarizes the design and preparation of photochromic hybrid materials, and particularly those based on the incorporation of organic molecules in organic-inorganic matrices by the sol-gel method. This is the most commonly used method for the preparation of these materials as it allows vitreous hybrid materials to be obtained at low temperatures, and controls the interaction between the organic molecule and its embedding matrix, and hence allows tailoring of the performance of the resulting devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号