首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Point-of-care testing (POCT) is a fast developing area in clinical diagnostics that is considered to be one of the main driving forces for the future in vitro diagnostic market. POCT means decentralized testing at the site of patient care. The most important POCT devices are handheld blood glucose sensors. In some of these sensors, after the application of less than 1 μl whole blood, the results are displayed in less than 10 s. For protein determination, the most commonly used devices are based on lateral flow technology. Although these devices are convenient to use, the results are often only qualitative or semiquantitative. The review will illuminate some of the current methods employed in POCT for proteins and will discuss the outlook for techniques (e.g., electrochemical immunosensors) that could have a great impact on future POCT of proteins.  相似文献   

2.
潘建章  方群 《分析化学》2012,40(1):11-17
综述了近年来面向床边检验应用的微流控分析仪器的研究进展.针对仪器微型化过程中所面临的流体操控自动化的发展瓶颈,以流体操控方式对当前床边检验分析系统进行了分类.评述了适用于现场床边检验应用的各类流体操控方式的优缺点及适用范围,并展望了微流控床边检验分析系统的发展方向和前景.  相似文献   

3.
Point-of-care testing (POCT) is becoming a hot research topic that allows rapid, on-site, and non-professional measurements outside the central laboratory. The micro-fabricated devices prepared by various micro-machining technologies have shown the advantages of low reagent consumption, high-throughput samples, and wearability. This review presents the recent progress of electrochemical biosensors based on various micro-fabricated devices for POCT and the corresponding electrochemical techniques. Signal amplification strategies based on enzyme and nanotechnology are also illustrated for the more sensitive POCT applications of these micro-fabricated devices. Consequently, the trends and challenges of electrochemical biosensors based on micro-fabricated devices in POCT diagnosis are discussed.  相似文献   

4.
POCT provides the opportunity to significantly improve the overall quality of blood testing in an organization. The design of the product, the redesign of the testing process and the tools used to manage a completely distributed testing process, are key to the quality implementation of POCT. Both theoretical considerations and practical outcomes are discussed in this paper, using the i-STAT® System as an example of a POCT system.  相似文献   

5.
Point-of-care testing (POCT) is a complex system with many opportunities for error. Delivering quality POCT requires multidisciplinary coordination and an understanding of the preanalytic, analytic, and postanalytic processes that are necessary to deliver a test result and take clinical action. Most errors in laboratory testing occur in the pre and postanalytical phases and many mistakes that are referred to as lab error are actually due to poor communication, actions by others involved in the testing process, or poorly designed processes outside the laboratory's control. POCT requires significant operator interaction with analysis and documentation of calibration and quality control, unlike other medical devices. Clinicians often interpret POCT as equivalent to core laboratory testing, only faster, and mistakenly utilize the results interchangeably despite the differences in test methodologies. Taking quality of POCT to the next level involves looking beyond the analytical phase and integration of POCT into the entire pathway of patient care to understand how POCT relates to medical decision-making at specific points during the patient's care. A systematic review of the literature by the National Academy of Clinical Biochemistry is currently being conducted to draft guidelines for best practice that link the use of POCT to improved patient outcomes.Presented at the 10th Conference Quality in the Spotlight, March 2005, Antwerp, Belgium.  相似文献   

6.
In terms of testing, modern laboratory medicine can be divided into centralized testing in central laboratories and point-of-care testing (POCT). Centralized laboratory medicine offers high-quality results, as guaranteed by the use of quality management programs and the excellence of the staff. POCT is performed by clinical staff, and so such testing has moved back closer to the patient. POCT has the advantage of shortening the turnaround time, which potentially benefits the patient. However, the clinical laboratory testing expertise of clinical staff is limited. Consequently, when deciding which components of laboratory testing must be conducted in central laboratories and which components as POCT (in relation to quality and timeliness), it will be medical necessity, medical utility, technological capabilities and costs that will have to be ascertained. Provided adequate quality can be guaranteed, POCT is preferable, considering its timeliness, when testing vital parameters. It is also preferred when the central laboratory cannot guarantee the delivery of results of short turn-around-time (STAT) markers within 60 or (even better) 30 min. POCT should not replace centralized medical laboratory testing in general, but it should be used in cases where positive effects on patient care have been clearly demonstrated.  相似文献   

7.
Point-of-care testing (POCT) devices have evolved to provide beneficial information about an individual's health whenever needed. Enzyme-based analytical devices have facilitated the highly selective detection of numerous biological molecules and ions. Enzymes are commonly used as the tags of recognition components, such as antibodies, to generate and amplify detection signals. Particularly, alkaline phosphatase (ALP) is one of the most widely used enzymes because of its high turnover number and low cost. Rapid response time and the incorporation of many sensors fabricated by micro/nano processing technologies are the advantages in using electrochemical devices as analytical tools. Therefore, ALP-based electrochemical devices have potential applications for more practical POCT platforms. This review summarizes recent research progress of ALP-based electrochemical devices for POCT. In addition to ALP substrates, the application of ALP-based immunosensors, aptasensors, and DNAzyme sensors are discussed.  相似文献   

8.
The demand for point-of-care testing (POCT) is growing dramatically, especially for district where health facilities are poorly staffed, poorly skilled and ill-equipped. As a commercialized portable device, pH meters can be used for detection of various targets, relying on bioactive enzymes. The nanozymes, as the alternative of the natural enzymes, have rarely been used for pH-metric POCT strategies. Herein, we developed an ultrasensitive pH-metric sandwich-type aptasensor based on the CeO2 nanorods (CeO2 NRs) as phosphatase-mimic and sodium monofluorophosphate (MFP) as catalytic substrate. Under optimal conditions, such strategy yields a detection limit of 1.17 nM with eligible selectivity for detecting thrombin.  相似文献   

9.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

10.
NMR shows strong analytical capability for obtaining molecular information on materials and is used in a variety of fields. Micro-NMR (µNMR) is mainly based on low-field NMR (LF-NMR), which makes NMR detection portable and inexpensive. Point-of-care testing (POCT) has gradually become an area of major concern, and scientists have made much progress in applying µNMR systems for POCT. To the best of our knowledge, this is the first review of the latest development in miniaturization of µNMR systems. Then, we discuss cutting-edge µNMR-based applications in POCT and the outlook for future developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号