首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
The dipyridylphosphane/diamine–Ru complex combined with tBuOK in 2propanol acts as a very effective catalyst system for the enantioselective hydrogenation of a diverse range of simple ketones including heteroaromatic ketones, substituted benzophenones, alkenyl ketones, and cyclopropyl ketones. The combination of desirable features, such as quantitative chemical yields within hours, broad substrate scope, excellent enantioselectivities (up to 99 %), and high substrate‐to‐catalyst ratios, among others, makes the present catalyst system of high practical interest.  相似文献   

2.
The stereoselective hydride reduction of the cis- and trans-substituted cyclopropyl ketones was systematically investigated using a series of structurally simplified substrates, trans-[tert-butyldiphenylsilyloxymethyl]cyclopropyl ketones 1a-e and trans-(benzyloxymethyl)cyclopropyl methyl ketone (2), and the corresponding cis congeners 3a,b,e and 4. The results showed that, not only in the reduction of the cis-substituted cyclopropyl ketones but also in that of the trans-substituted ketones, high stereoselectivity can be realized when the substrate has a bulky substituent on the cyclopropane ring, even though it is attached to the position trans to the acyl moiety. Ab initio calculations based on the density functional theory (DFT) of cyclopropyl ketones showed that (1) the bisected s-cis and s-trans conformers were the only two minimum energy conformers, while the s-cis conformer was more stable than the s-trans and (2) a bulky alkyl group in the acyl moiety and a cis substituent on the cyclopropane ring made the bisected s-cis conformer much more stable. On the basis of these calculations and experimental results, it is likely that the more stable the bisected s-cis conformer of the substrate, the more stereoselective the hydride reduction. Thus, the stereochemistry can be explained by hydride attack on the bisected s-cis conformation of the substrate from the less-hindered face. The predictability of the stereochemical results is predicated on the bisected s-cis transition-state model, which is very important from the viewpoint of synthetic organic chemistry.  相似文献   

3.
[reaction: see text] An enzyme-compatible biphasic reaction media for the asymmetric biocatalytic reduction of ketones with in situ cofactor regeneration has been developed. In this biphasic reaction media, which is advantageous for reactions at higher substrate concentrations, both enzymes (alcohol dehydrogenase and FDH from Candida boidinii) remain stable. The reductions with poorly water-soluble ketones were carried out at substrate concentrations of 10-200 mM, and the optically active (S)-alcohols were formed with moderate to good conversions and with up to >99% ee.  相似文献   

4.
β,γ‐Unsaturated ketones are an important class of organic molecules. Herein, copper catalysis has been developed for the synthesis of β‐γ‐unsaturated ketones through 1,2‐addition of α‐carbonyl iodides to alkynes. The reactions exhibit wide substrate scope and high functional group tolerance. The reaction products are versatile synthetic intermediates to complex small molecules. The method was applied for the formal synthesis of (±)‐trichostatin A, a histone deacetylase inhibitor.  相似文献   

5.
An eco-friendly and noble-metal-free formal [4+2] cycloaddition reaction was developed for the efficient synthesis of biologically interesting poly-substituted pyridines from easily available ketones and imines, whereby two sequential C−C bonds are formed. The given approach features a unique synthetic strategy of imines and ketones with wide substrate scope, good functional group tolerance, mild conditions and operational simplicity, which represents a more direct pathway to synthesize poly-substituted pyridines than traditional methods.  相似文献   

6.
The hydrogenation of unsaturated organic substrates such as olefins and ketones is usually effected by homogeneous or heterogeneous transition-metal catalysts. On the other hand, a single case of a transition-metal-free and purely base-catalyzed hydrogenation of ketones was reported by Walling and Bollyky some 40 years ago. Unfortunately, the harsh reaction conditions (ca. 200 degrees C, >100 bar H(2), potassium tert-butoxide as base) limit the substrate spectrum of this reaction to robust, nonenolizable ketones such as benzophenone. We herein present a mechanistic study of this process as a basis for future rational improvement. The base-catalyzed hydrogenation of ketones was found to be irreversible, and it shows first-order kinetics with respect to the substrate ketone, hydrogen, and catalytic base. The rate of the reaction depends on the type of alkali ion present (Cs > Rb - K > Na > Li). Using D(2) instead of H(2) revealed a rapid base-catalyzed isotope exchange/equilibration between the gas phase and the solvent as a concomitant reaction. The degree of deuteration of the product alcohols did not indicate a significant kinetic isotope effect. It is proposed that both ketone reduction and isotope exchange proceed via similar six-membered cyclic transition states involving the H(2)(D(2))-molecule, the alkoxide base, and the ketone (solvent alcohol in the case of isotope exchange). Mechanistic analogies are pointed out which apparently exist between the base-catalyzed hydrogenation of ketones studied here and the Ru-catalyzed asymmetric ketone hydrogenation developed by Noyori. In both cases, heterolysis of the hydrogen molecule appears to be assisted by a Br?nsted-base (i.e., alkoxide), the latter being bound to the substrate ketone or the catalyst ligand, respectively, by a bridging Lewis-acidic alkali ion.  相似文献   

7.
A homogeneous manganese-catalyzed cross-coupling of two secondary alcohols for the divergent synthesis of γ-disubstituted alcohols and β-disubstituted ketones is reported. Employing the well-defined Mn-MACHOPh as the catalyst, this novel protocol has a broad substrate scope with good functional group tolerance and affords a diverse library of valuable disubstituted alcohols and ketones in moderate to good yields. The strong influence of the reaction temperature on the selective formation of alcohol products was theorized in preliminary DFT studies. Studies have shown that the Gibbs free energy of the formation of alcohols is thermodynamically more favourable than corresponding ketones at a lower temperature.  相似文献   

8.
Primary amine-thiourea derivative 1 is an active and highly enantioselective catalyst for the conjugate addition of ketones to nitroalkenes. Broad substrate scope is described, with nitroalkenes bearing either aromatic or aliphatic substituents and a wide variety of ketones shown to be useful reacting partners. Ethyl ketones react preferentially, generating anti products with methyl-bearing stereocenters with good-to-excellent diastereoselectivity. An enamine mechanism is indicated, with cooperative activation of the electrophile by the thiourea and of the ketone by the primary amine.  相似文献   

9.
A simple, efficient and metal-free route for the synthesis of dissymmetric ketones through Suzuki type cross-coupling reaction has been established. This strategy signifies an attractive, cost-effective and operationally convenient tool for the synthesis of a wide range of dissymmetric ketones. Although conventional routes for the synthesis of ketones have been widely used, the potential challenge with these methods is functional group tolerance. The reported metal-free method represents a reaction with moderate functional group tolerance. The procedure is operationally convenient and shows broad substrate scope with good to excellent product yields.  相似文献   

10.
《Tetrahedron: Asymmetry》2006,17(21):3010-3014
In an effort to search for effective biocatalysts for asymmetric ketone reduction, the substrate specificity and enantioselectivity of an alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus have been evaluated. This hyperthermophilic alcohol dehydrogenase catalyzes the reduction of various ketones including aryl ketones, α- and β-ketoesters. Interestingly, aryl ketones, phenyl-substituted α- and β-ketoesters were reduced to the corresponding chiral alcohols in an enantiomerically pure form, while the substrates lacking phenyl groups were reduced with a moderate enantioselectivity. It thus suggests that a phenyl group next to the carbonyl group could be very helpful for achieving an excellent enantioselectivity, and this could provide valuable guidance for the future application of this useful enzyme through rational substrate engineering. The reaction temperature increased the enzyme activity, but exerted no effect on the enantioselectivity. This alcohol dehydrogenase also showed a high tolerance of organic solvents such as dimethyl sulfoxide, iso-propanol, methyl tert-butyl ether, and hexane, a particularly important and useful feature for the reduction of ketones with a low solubility in aqueous buffers.  相似文献   

11.
《Tetrahedron: Asymmetry》2005,16(22):3682-3689
The results of a reduction of a wide range of ketones using 31 commercially available isolated ketoreductases (KREDs) are presented. All enzymes accepted a wide substrate range. The stereoselectivity of each enzyme was measured for the reduction of benzoyl-hydroxyacetone and ethyl-3-oxobutanoate, and in each case, enzymes which produce enantiomerically pure (R)- and (S)-alcohols were found. The preparative scale reactions were investigated using two ketones with different hydrophobicities (benzoyl-hydroxyacetone and α-tetralone) and using enzymes with varying specific activities for their reduction. Regardless of the hydrophobicity of the substrate, high titers of ketone (0.75–1.4 M) were reduced in high yield using catalytic amounts of enzyme (1–7% g/g relative to substrate) and cofactor (0.1–0.2% equiv. relative to ketone) within 4–24 h. The cofactor was efficiently regenerated in situ via the oxidation of glucose by glucose dehydrogenase, an enzyme that has also been cloned and over-expressed. These results show that isolated ketoreductases can be quickly and easily screened against target ketones, and the reactions can be scaled to produce preparative amounts of chiral alcohols. Ketoreductase enzymes should become a standard addition to the organic chemists toolbox of asymmetric catalysts for stereoselective ketone reduction.  相似文献   

12.
Ketones are an important class of molecules in synthetic and medicinal chemistry. Rapid and modular synthesis of ketones remains in high demand. Described here is a nickel‐catalyzed three‐component reductive carbonylation method for the synthesis of dialkyl ketones. A wide range of both symmetric and asymmetric dialkyl ketones can be accessed from alkyl halides and a safe CO source, ethyl chloroformate. The approach offers complementary substrate scope to existing carbonylation methods while avoiding the use of either toxic CO or metal carbonyl reagents.  相似文献   

13.
The present work pertains to the effect of temperature on the oscillatory behavior of bromate driven, Manganese (II) ion catalyzed BZ reaction with aromatic substrate i.e. resorcinol under batch conditions in 1.3 M sulfuric acid as aqueous acid medium. In order to study the effect of methyl ketones as additives (co-substrates), acetone is added to the aforesaid reaction system and the oscillations of the mixed substrate systems were studied at different temperatures. Further the effect of temperature with respect to ternary systems comprising of acetone with other ketones like butanone, pentanone, hexanone and acetyl acetone in 1:1 (v/v) ratio is also studied. It is found that temperature has a marked influence on the reactivity of the reaction systems, with and without methyl ketones and at all concentrations of the additives. Moreover, the rate of enolization of ketones also affects the oscillatory parameters like t in and t p. Although the exact values of enolization constants for the methyl ketones are not known to us, but by studying the oscillatory behavior, a trend can be predicted. Further the formation of end products in the ternary systems is influenced due to hydrophobic interactions of the ketones.  相似文献   

14.
Domino carbocationic rearrangements of α-[bis(methylthio)methylene]alkyl-2-(heteroaryl)cyclopropyl ketones (X=O, S, NMe) bearing five-membered heteroaryl group have been investigated. Although the cyclopropyl ketones (R1=H) gave similar products like their aryl counterparts under these conditions, the corresponding α-methylcyclopropyl ketones (R1=Me) yielded a variety of unexpected products depending on the nature of heteroaryl group in the substrate cyclopropyl ketones and the type of acid catalyst used. A probable mechanism for the formation of various products in these transformations has been proposed.  相似文献   

15.
In an effort to study the effect of substituent groups of the substrate on the alcohol dehydrogenase (ADH) reductions of aryl-alkyl ketones, several derivatives of acetophenone have been evaluated against ADHs from Lactobacillus brevis (LB) and Thermoanaerobacter sp. (T). Interestingly, ketones with non-demanding (neutral) para-substituents were reduced to secondary alcohols by these enzymes in enantiomerically pure form whereas those with demanding (ionizable) substituents could not be reduced. The effect of substrate size, their solubility in the reaction medium, electron donating and withdrawing properties of the ligand and also the electronic charge density distribution on the substrate molecules have been studied and discussed in detail. From the results, it is observed that the electronic charge distribution in the substrate molecules is influencing the orientation of the substrate in the active site of the enzyme and hence the ability to reduce the substrate.  相似文献   

16.
Herein we report a full article about the detailed design and development of two palladium-catalyzed redox cascade methods that enable direct β-arylation of ketones. Palladium-catalyzed ketone dehydrogenation, aryl-X bond activation and conjugate addition were merged into a redox-neutral catalytic cycle. Non-metal-based aryl electrophiles were used as both the oxidant and the aryl source. The β-arylation with aryl iodides was achieved site-selectively with Pd(TFA)2/P(i-Pr)3 as the precatalyst and AgTFA as the iodide scavenger. Both cyclic and linear ketones can react to give β-aryl ketones with excellent functional group tolerance. The β-arylation with diaryliodonium salts was realized without stoichiometric heavy metal additives, and proved to be redox-neutral. A wider substrate scope regarding aryl groups and ketones was obtained for the arylation with diaryliodonium salts, and the possible involvement of palladium nanoparticles as the active catalyst was examined and discussed.  相似文献   

17.
α,β-Unsaturated carbonyl compounds are versatile intermediates in the synthesis of pharmaceuticals and biologically active compounds. Here, we report the discovery and application of Pd(DMSO)(2)(TFA)(2) as a catalyst for direct dehydrogenation of cyclohexanones and other cyclic ketones to the corresponding enones, using O(2) as the oxidant. The substrate scope includes heterocyclic ketones and several natural-product precursors.  相似文献   

18.
A number of ruthenium triphenylphosphine complexes catalyse the reduction of ketones to their corresponding alcohols in the presence of water. The most convenient catalyst precursors are carbonyl containing complexes which do not promote decarbonylation of the substrate. The hydrogenation of acetone with hydridochlorocarbonyltris(triphenylphosphine)ruthenium is first order with respect to the substrate concentration, the catalyst concentration, the hydrogen pressure and the water concentration. Turnover numbers up to 15,000 have been achieved with this catalyst. Other ketones are also reduced by RuHCl(CO)(PPh3)3 and the rate of the reaction is dependent on the nature of the substrate.  相似文献   

19.
The majority of prokaryotic drugs are produced in glycosylated form, with the deoxygenation level in the sugar moiety having a profound influence on the drug's bioprofile. Chemical deoxygenation is challenging due to the need for tedious protective group manipulations. For a direct biocatalytic de novo generation of deoxysugars by carboligation, with regiocontrol over deoxygenation sites determined by the choice of enzyme and aldol components, we have investigated the substrate scope of the F178Y mutant of transaldolase B, TalB(F178Y), and fructose 6-phosphate aldolase, FSA, from E. coli against a panel of variously deoxygenated aldehydes and ketones as aldol acceptors and donors, respectively. Independent of substrate structure, both enzymes catalyze a stereospecific carboligation resulting in the D-threo configuration. In combination, these enzymes have allowed the preparation of a total of 22 out of 24 deoxygenated ketose-type products, many of which are inaccessible by available enzymes, from a [3×8] substrate matrix. Although aliphatic and hydroxylated aliphatic aldehydes were good substrates, D-lactaldehyde was found to be an inhibitor possibly as a consequence of inactive substrate binding to the catalytic Lys residue. A 1-hydroxy-2-alkanone moiety was identified as a common requirement for the donor substrate, whereas propanone and butanone were inactive. For reactions involving dihydroxypropanone, TalB(F178Y) proved to be the superior catalyst, whereas for reactions involving 1-hydroxybutanone, FSA is the only choice; for conversions using hydroxypropanone, both TalB(F178Y) and FSA are suitable. Structure-guided mutagenesis of Ser176 to Ala in the distant binding pocket of TalB(F178Y), in analogy with the FSA active site, further improved the acceptance of hydroxypropanone. Together, these catalysts are valuable new entries to an expanding toolbox of biocatalytic carboligation and complement each other well in their addressable constitutional space for the stereospecific preparation of deoxysugars.  相似文献   

20.
The photooxidation of 2'-deoxyguanosine (dG) and its derivative 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) by a series of acetophenones (AP-X) and benzophenone (BP) has been studied.The favorable absorption characteristics of the benzoyl chromophore enables time-resolved spectroscopy of the triplet ketones to assess their quenching kinetics by dG and 8-oxodG. Whereas the photolysis of acetophenone (AP), 2-acetoxyacetophenone (AP-OAc), and benzophenone (BP) does not produce radicals (group A ketones), the oxymethyl-substituted derivatives 2-hydroxyacetophenone (AP-OH) and 2-tert-butoxyacetophenone (AP-O(t)Bu) lead to carbon-centered radicals by alpha cleavage (group B ketones). For the latter ketones, this was confirmed by EPR studies with the spin trap 5,5-dimethylpyrroline N-oxide (DMPO) and by their triplet lifetimes that were shorter than those for the unsubstituted acetophenone. Both groups of ketones photooxidize dG and 8-oxodG; the oxidation products are spiroiminodihydantoin and guanidine-releasing products (GRP) in the case of dG and AP-OH also 8-oxodG. In the presence of O(2), the photooxidation by the group A ketones is efficient at high dG or 8-oxodG concentrations, whereas the group B ketones photooxidize dG and 8-oxodG also at low substrate concentrations. These results imply that peroxyl radicals are responsible for the photooxidation by the group B ketones, which are formed by alpha cleavage of the triplet ketone and subsequent O(2) trapping of the carbon-centered radicals. At higher dG concentrations, direct electron transfer from dG to the triplet ketone, as observed for the group A ketones, competes with the radical activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号