首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The salts [(BAC)2PO][BF4] ( 5 ) and [(BAC)2PO2][BF4] ( 4 ) (BAC=bis(diisopropylamino) cyclopropenylidene), consisting of the PO+ and PO2+ cations, respectively, coordinated to the singlet carbenes, have been prepared. Computational investigations reveal that the electronic structure of the PO+ cation is a hybrid between the charge‐localized and charge‐delocalized resonance forms, resulting in ambiphilic reactivity. Compound 5 reacts as a donor with the transition‐metal complex K2PtCl4 to furnish [[(BAC)2PO]2PtCl2][BF4]2 ( 6 ) and KCl. Remarkably, both 5 and 4 have shown to act as electrophiles undergoing reactions with fluoride anion, leading to [OPF2]? and (BAC)PO2F, respectively.  相似文献   

3.
4.
[V2O]+ remains “invisible” in the thermal gas‐phase reaction of bare [V2]+ with CO2 giving rise to [V2O2]+; this is because the [V2O]+ intermediate is being consumed more than 230 times faster than it is generated. However, the fleeting existence of [V2O]+ and its involvement in the [V2]+ → [V2O2]+ chemistry are demonstrated by a cross‐over labeling experiment with a 1:1 mixture of C16O2/C18O2, generating the product ions [V216O2]+, [V216O18O]+, and [V218O2]+ in a 1:2:1 ratio. Density functional theory (DFT) calculations help to understand the remarkable and unexpected reactivity differences of [V2]+ versus [V2O]+ towards CO2.  相似文献   

5.
The metastable ions [M]2+, [M – H]2+· and [M – H2]2+ from malononitrile fragment by loss of [CH]+, [C]+· and [C]+·, respectively. The reaction of the molecular ion involves the methylene and nitrile carbon atoms in the statistical probability ratio, while that of [M – H]2+· involves exclusively the nitrile carbon and that of [M ? H2]2+ involves an approximately equal contribution, from both sources. It is suggested that the metastable molecular ion fragments through a bipyrimidal intermediate.  相似文献   

6.
Transition‐metal hexafluorides do not exhibit fluoride‐ion donor properties in the absence of donor ligands. We report the first synthesis of donor‐stabilized [MF5]+ derived from a transition‐metal hexafluoride via fluoride‐ion abstraction using WF6(L) (L=2,2′‐bipy, 1,10‐phen) and SbF5(OSO) in SO2. The [WF5(L)][Sb2F11] salts and [WF5(1,10‐phen)][SbF6]?SO2 have been characterized by X‐ray crystallography, Raman spectroscopy, and multinuclear NMR spectroscopy. The reaction of WF6(2,2′‐bipy) with an equimolar amount of SbF5(OSO) reveals an equilibrium between [WF5(2,2′‐bipy)]+ and the [WF4(2,2′‐bipy)2]2+ dication, as determined by 19F NMR spectroscopy. The geometries of the cations in the solid state are reproduced by gas‐phase geometry optimizations (DFT‐B3LYP), and NBO analyses reveal that the positive charges of the cations are stabilized primarily by compensatory σ‐electron donation from the N‐donor ligands.  相似文献   

7.
Thermal reactions of the closed‐shell metal‐oxide cluster [TaO3]+ with methane were investigated by using FTICR mass spectrometry complemented by high‐level quantum chemical calculations. While the generation of methanol and formaldehyde is somewhat expected, [TaO3]+ remarkably also has the ability to abstract two hydrogen atoms from methane with the elimination of CH2. Mechanistically, the generation of CH2O and CH3OH occurs on the singlet‐ground‐state surface, while for the liberation of 3CH2, a two‐state reactivity scenario prevails.  相似文献   

8.
9.
The reactions of [CH3]+ and [CD3]+ with a number of C1 to C5 alcohols were studied at approximately thermal energies (0.1 eV) using a tandem Dempster ion cyclotron resonance mass spectrometer. Branching ratios obtained under single collision conditions are reported for [CH3]+ and [CD3]+ with methanol, perdeutero methanol, ethanol, allyl alcohol, 1-propanol, 2-propanol, perdeutero-2-propanol, 1-butanol, 2-butanol, t-butanol, cyclopentanol and 1-pentanol. The results are examined in terms of the mechanism of reactions and indicate that upon progression to larger alcohols, the formation of a long-lived adduct becomes less important in determining the reaction products.  相似文献   

10.
11.
12.
In this study, three chromophores—p‐nitroaniline, 4‐(4‐nitrophenylazo)aniline, and 4‐[(E)‐2‐{4‐[(E)‐2‐(4‐nitrophenyl)‐1‐diazenyl]phenyl}‐1‐diazenyl]aniline—were intercalated into layered aluminosilicate saponite and then dispersed into the polyurethanes matrix. The intercalated chromophore/saponite complexes were examined by inductively coupled plasma emission and element analysis technologies. The molecular orbital package computation simulation and X‐ray diffraction (XRD) analysis showed that possible configurations of chromophore ions on the gallery surfaces of saponite suggest that the chromophore molecules lie parallel to the basal planes of silicate as an inclined paraffin structure or as pseudo‐multilayers. The XRD and transmission electron microscopy analysis indicated that the delamination of organoclay in the polyurethanes matrix exhibited nanolayers, exfoliated structure, or both. In particular, even at high doping levels up to 15 wt % of organoclay, the [chromophore]+‐saponite/polyurethanes film did not display a macroscopic aggregation of layered silicates and showed high transparency. The thermal stability of chromophore was significantly enhanced as intercalated into the layered aluminosilicate saponite, and the glass‐transition temperature of [chromophore]+‐saponite/polyurethanes nanocomposites proportionally increased with increased clay content. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1690–1703, 2002  相似文献   

13.
14.
15.
We studied the attraction between [C2Hn] and Tl(I) in the hypothetical [C2Hn–Tl]+ complexes (n = 2,4) using ab initio methodology. We found that the changes around the equilibrium distance C–Tl and in the interaction energies are sensitive to the electron correlation potential. We evaluated these effects using several levels of theory, including Hartree–Fock (HF), second‐order Møller–Plesset (MP2), MP4, coupled cluster singles and doubles CCSD(T), and local density approximation augmented by nonlocal corrections for exchange and correlation due to Becke and Perdew (LDA/BP). The obtained interaction energies differences at the equilibrium distance Re (C–Tl) range from 33 and 46 kJ/mol at the different levels used. These results indicate that the interaction between olefinic systems and Tl(I) are a real minimum on the potential energy surfaces (PES). We can predict that these new complexes are viable for synthesizing. At long distances, the behavior of the [C2Hn]–Tl+ interaction may be related mainly to charge‐induced dipole and dispersion terms, both involving the individual properties of the olefinic π‐system and thallium ion. However, the charge‐induced dipole term (R?4) is found as the principal contribution in the stability at long and short distances. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

16.
The effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) on the kinetics of interaction of copper dipeptide complex [Cu(II)‐Gly‐Gly]+ with ninhydrin has been studied spectrophotometrically at 70°C and pH 5.0. The reaction follows first‐ and fractional‐order kinetics, respectively, in complex and ninhydrin. The reaction is catalyzed by CTAB micelles, and the maximum rate enhancement is about twofold. The results obtained in the micellar medium are treated quantitatively in terms of the kinetic pseudophase and Piszkiewicz models. The rate constants (kobs or kΨ), micellar‐binding constants (kS for [Cu(II)‐Gly‐Gly]+, kN for ninhydrin), and index of cooperativity (n) have been evaluated. A mechanism is proposed in accordance with the experimental results. The influence of different inorganic (NaCl, NaBr, Na2SO4) and organic (NaBenz, NaSal) salts on the reaction rate has also been seen, and it is found that tightly bound/incorporated counterions are the most effective. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 556–564, 2007  相似文献   

17.
The structures of gas-phase [C4H6O] radical cations and their daughter ions of composition [C2H2O] and [C3H6] were investigated by using collisionally activated dissociation, metastable ion measurement, kinetic energy release and collisional ionization tandem mass spectrometric techniques. Electron ionization (70 eV) of ethoxyacetylene, methyl vinyl ketone, crotonaldehyde and 1-methoxyallene yields stable [C4H6O] ions, whereas the cyclic C4H6O compounds undergo ring opening to stable distonic ions. The structures of [C2H3O] ions produced by 70-eV ionization of several C4H6O compounds are identical with that of the ketene radical cation. The [C3H6] ions generated from crotonaldehyde, methacrylaldehyde, and cyclopropanecarboxaldehyde have structures similar to that of the propene radical cations, whereas those ions generated from the remainder of the [C4H6O] ions studied here produced a mixed population of cyclopropane and propene radical cations.  相似文献   

18.
Ten criteria are introduced to distinguish between molecular ions and protonated parent molecules in field desorption mass spectrometry.  相似文献   

19.
The triangular clusters [Zn3Cp*3]+ and [Zn2CuCp*3] were obtained by addition of the in situ generated, electrophilic, and isolobal species [ZnCp*]+ and [CuCp*] to Carmona’s compound, [Cp*Zn? ZnCp*], without splitting the Zn? Zn bond. The choice of non‐coordinating fluoroaromatic solvents was crucial. The bonding situations of the all‐hydrocarbon‐ligand‐protected clusters were investigated by quantum chemical calculations revealing a high degree of σ‐aromaticity similar to the triatomic hydrogen ion [H3]+. The new species serve as molecular building units of CunZnm nanobrass clusters as indicated by LIFDI mass spectrometry.  相似文献   

20.
Upon treating elemental sulfur with [AgSbF(6)], [AgAl(hfip)(4)], [AgAl(pftb)(4)] (hfip=OCH(CF(3))(2), pftb =OC(CF(3))(3)) the compounds [Ag(S(8))(2)][SbF(6)] (1), [AgS(8)][Al(hfip)(4)] (2), and [Ag(S(8))(2)](+)[[Al(pftb)(4)](-) (3) formed in SO(2) (1), CS(2) (2), or CH(2)Cl(2) (3). Compounds 1-3 were characterized by single-crystal X-ray structure determinations: 1 by Raman spectroscopy, 2 and 3 by solution NMR spectroscopy and elemental analyses. Single crystals of [Ag(S(8))(2)](+)[Sb(OTeF(5))(6)](-) 4 were obtained from a disproportionation reaction and only characterized by X-ray crystal structure analysis. The Ag(+) ion in 1 coordinates two monodentate SbF(6) (-) anions and two bidentate S(8) rings in the 1,3-position. Compound 2 contains an almost C(4v)-symmetric [AgS(8)](+) moiety; this is the first example of an eta(4)-coordinated S(8) ring (d(Agbond;S)=2.84-3.00 A). Compounds 3 and 4, with the least basic anions, contain undistorted, approximately centrosymmetric Ag(eta(4)-S(8))(2) (+) cations with less symmetric eta(4)-coordinated S(8) rings (d(Agbond;S)=2.68-3.35 A). The thermochemical radius and volume of the undistorted Ag(S(8))(2) (+) cation was deduced as r(therm)(Ag(S(8))(2) (+))=3.378+ 0.076/-0.120 A and V(therm)(Ag(S(8))(2) (+))=417+4/-6 A(3). AgS(8) (+) and several isomers of the Ag(S(8))(2) (+) cation were optimized at the BP86, B3LYP, and MP2 levels by using the SVP and TZVPP basis sets. An analysis of the calculated geometries showed the MP2/TZVPP level to give geometries closest to the experimental data. Neither BP86 nor B3LYP reproduced the longer weak dispersive Agbond;S interactions in Ag(eta(4)-S(8))(2) (+) but led to Ag(eta(3)-S(8))(2) (+) geometries. With the most accurate MP2/TZVPP level, the enthalpies of formation of the gaseous [AgS(8)](+) and [Ag(S(8))(2)](+) cations were established as Delta(f)H(298)([Ag(S(8))(2)](+), g)=856 kJ mol(-1) and Delta(f)H(298)([AgS(8)](+), g)=902 kJ mol(-1). It is shown that the [AgS(8)](+) moiety in 2 and the [AgS(8)](2) (+) cations in 3 and 4 are the best approximation of these ions, which were earlier observed by MS methods. Both cations reside in shallow potential-energy wells where larger structural changes only lead to small increases in the overall energy. It is shown that the covalent Agbond;S bonding contributions in both cations may be described by two components: i) the interaction of the spherical empty Ag 5s(0) acceptor orbital with the filled S 3p(2) lone-pair donor orbitals and ii) the interaction of the empty Ag 5p(0) acceptor orbitals with the filled S 3p(2) lone-pair donor orbitals. This latter contribution is responsible for the observed low symmetry of the centrosymmetric Ag(eta(4)-S(8))(2) (+) cation. The positive charge transferred from the Ag(+) ion in 1-4 to the coordinated sulfur atoms is delocalized over all the atoms in the S(8) ring by multiple 3p(2)-->3sigma* interactions that result in a small long-short-long-short Sbond;S bond-length alternation starting from S1 with the shortest Agbond;S length. The driving force for all these weak bonding interactions is positive charge delocalization from the formally fully localized charge of the Ag(+) ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号