首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 100 毫秒
1.
Differential enthalpic analysis was carried out below the melting point as well as at regular increases of temperature over the melting point of peroxides. From these measurements it follows that the thermal stabilities of peroxides in the solid state increase with their melting points. The rise in the melting point of the peroxide due to changed chemical structure is accompanied by a rise in the melting points of products which in turn affects the isothermal autocatalytic decomposition. The common feature of the thermal decomposition of the peroxides studied below their melting points is a very high apparent activation energy of the initiation of a chain decomposition reaction which is several times higher than that of a spontaneous thermal decomposition of peroxide in solution or in a melt of peroxide. p]From the study of the decomposition of nitro derivatives of benzoyl peroxide in solution it is known1 that the electron attracting nitro-substituents have a retarding effect on the spontaneous decomposition of peroxides. The introduction which accompanies its thermal decomposition in solution2. However not only the substitution of nitro groups in the molecule but also the presence of nitro compounds accelerates the decomposition of benzoyl peroxide3. This indicates that the decomposition reaction may be influenced not only by an intramolecular rearrangement of electrons but also by an intermolecular interaction of nitro compounds with the peroxidic compounds or radicals generated by them. The substitution of methyl groups for hydrogen in aromatic rings does not produce any marked changes in the decomposition reactions of benzoyl peroxide2. p]Among other changes produced by substitution, the physical changes—in particular, the changes in the melting points of investigated substances—are of importance to out study of the thermal decomposition of nitro derivatives of nitro derivatives of benzoyl peroxide. These data are interesting mainly because the decomposition of peroxides is influenced by the state of aggregation of the decomposing substances.  相似文献   

2.
Linear and branched zinc(II) xanthates with varying alkyl chain length were synthesized and characterized by 1H NMR, 13C NMR, and IR spectroscopy, as well as elemental analysis. Zinc sulfide as the final decomposition product upon thermal annealing of zinc(II) xanthates was confirmed by XRD analysis. Cure time for epoxy resin composite at various temperatures was analyzed employing zinc(II) xanthates (5 % mass) as latent cure catalysts. XRD investigation of the cured epoxy resin including zinc(II) xanthates upon thermal annealing revealed the presence of ZnS in‐situ in the composite matrix, indicating the in‐situ thermal decomposition of zinc(II) xanthates as probable mechanism for curing. Thermogravimetric analysis was performed to investigate the thermal decomposition temperature trend of zinc(II) xanthates. A parallel trend was observed correlating the thermal decomposition temperature trend of zinc(II) xanthates and the order of curing catalytic efficiency utilizing zinc(II) xanthates. In the case of linear alkylzinc(II) xanthates with an increase in the alkyl chain length, both thermal decomposition temperature and the cure time were enhanced. In contrast, in case of branched alkyl chain zinc(II) xanthates with increasing alkyl chain length show decreasing thermal decomposition temperature as well as cure time.  相似文献   

3.
Thermotropic liquid crystalline terpolymers consisting of three units of p-oxybenzoate (B), ethylene terephthalate (E), and vanillate (V), were studied through a high-resolution thermogravimetry to ascertain their thermostability and kinetics parameters of thermal decomposition in nitrogen and air. Overall activation energy data of the major decomposition have been calculated through four calculating techniques. The thermal degradation occurs in three steps in nitrogen, but in four steps in air due to an additional thermo-oxidative step. The thermal degradation temperatures are higher than 436°C in nitrogen and 424°C in air and increase with increasing B-unit content at a fixed V-unit content of 5 mol%. The temperatures at the first maximum weight-loss rate are higher than 444°C in nitrogen and 431°C in air and increase slightly with an increase in B-unit content. The first, second, and third maximum weight-loss rates almost maintain at 10–11, 10–11, and 3.6–5.3%/min regardless of copolymer composition and testing atmosphere. The char yields at 500°C in both nitrogen and air are larger than 40 wt% and increases with increasing B-unit content. But the char yields at 800°C in nitrogen and air are quite different, i.e., 18–25 wt% in nitrogen and 0 wt% in air. The activation energy and Ln (pre-exponential factor) for the major decomposition are higher in nitrogen than in air and decrease slightly with an increase in B-unit content at a given V-unit content 5 mol%. There is no regular variation in the decomposition order with the variation of copolymer composition and testing atmosphere. It is found that the most V-unit-containing terpolymer exhibited the lowest degradation temperature, lowest activation energy, and lowest Ln (pre-exponential factor). The activation energy, decomposition order, and Ln (pre-exponential factor) of the thermal degradation for the terpolymers, are situated in the ranges of 121–248 kJ/mol, 1.5–2.8, 19–38 min?1, respectively. These results indicate that the terpolymers exhibit high thermostability. The isothermal decomposition kinetics of the terpolymer at 450°C have also been discussed and compared with the results obtained based non-isothermal high-resolution thermogravimetry.  相似文献   

4.
The complexes of cobalt(II) with dothiepin (DOT) hydrochloride have been studied for kinetics of thermal degradation by thermogravimetric analysis (TG) and derivative thermogravimetric studies (DTG) in a static nitrogen atmosphere at a heating rate of 10° C min−1. A general mechanism of thermal decomposition is advanced involving dehydration and decomposition process for both organic and inorganic ligands. The thermal degradation reactions were found to proceed in three steps having an activation energy in the range 6.75–170 kJ mol−1. Thermal decomposition kinetics parameters were computed on the basis of thermal decomposition data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Polypropylene‐low density polyethylene (PP‐LDPE) blends involving PP‐LDPE (90/10 wt%.) with (0.06 wt%) dialkyl peroxide (DAP) and different amounts (5, 10, 20 wt%) of calcium carbonate (CaCO3) were prepared by melt‐blending with a single‐screw extruder. The effect of addition of CaCO3 on thermal decomposition process and kinetic parameters, such as activation energy and pre‐exponential factor of PP‐LDPE blend with DAP matrix, was studied. The kinetics of the thermal degradation of composites was investigated by thermogravimetric analysis in dynamic nitrogen atmosphere at different heating rates. TG curves showed that the thermal decomposition of composites occurred in one weight‐loss stage. The apparent activation energies of thermal decomposition for composites, as determined by the Tang method (TM), the Kissinger–Akahira–Sunose method (KAS), the Flynn–Wall–Ozawa method (FWO), and the Coats–Redfern (CR) method were 156.6, 156.0, 159.8, and 167.7 kJ.mol?1 for the thermal decomposition of composite with 5 wt% CaCO3, 191.5, 190.8, 193.1, and 196.8 kJ.mol?1 for the thermal decomposition of composite with 10 wt% CaCO3, and 206.3, 206.1, 207.5, and 203.8 kJ mol?1 for the thermal decomposition of composite with 20 wt% CaCO3, respectively. The most likely decomposition process for weight‐loss stages of composites with CaCO3 content 5 and 10 wt% was an An sigmoidal type. However, the most likely decomposition process for composite with CaCO3 content 20 wt% was an Rn contracted geometry shape type in terms of the CR and master plots results. It was also found that the thermal stability, activation energy, and thermal decomposition process were changed with the increase in the CaCO3 filler weight in composite structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The influence of lithium oxide-doping on the thermal stability of Co3O4 was studied using DTA, TG, DTG and X-ray diffraction techniques. Pure and doped cobaltic oxide specimens were prepared by thermal decomposition of pure basic cobalt carbonate and the basic carbonate mixed with different proportions of LiOH, in air, at different temperatures between 500 and 1100°C.Pure Co3O4 was found to start partial decomposition when heated in air at 830°C yielding the CoO phase. The complete decomposition was effected by heating at 1000°C.Doping of Co3O4 with different proportions of Li2O was found to much increase its thermal stability. The temperatures at which the doped oxide samples started to undergo decomposition were increased to 865, 910 and 1050°C for 0.375, 0.75 and 3% Li2O-doped solids, respectively. The DTA revealed that the 1.5% Li2O-doped cobaltic oxide did not undergo any thermal decomposition till 1080°C. The X-ray investigation showed that the prolonged heating of 1.5 and 3% Li2O-doped solids at 1100°C for 36 h effected only a partial decomposition of Co3O4 into CoO. Heating of these solids at temperatures varying between 900 and 1100°C led also to the formation of a new lithium oxide cobaltic oxide phase, the composition of which has not yet been identified.The role of Li2O in increasing the thermal stability of Co3O4 was attributed to the substitution of some of its cobalt ions by Li+ ions, according to Verwey and De Boer's mechanism, leading to the transformation of some of the Co2+ into Co3+ ions thus increasing the oxidation state of the cobaltic oxide lattice.  相似文献   

7.
The aim of the work was to determine the effect of heating rate on initial decomposition temperature and phases of thermal decomposition of cellulose insulation. The activation energy of thermo‐oxidation of insulation was also determined. Individual samples were heated in the air flow in the thermal range of 100°C to 500°C at rates from 1.9°C min?1 to 20.1°C min?1. The initial temperatures of thermal decomposition ranged from 220°C to 320°C, depending on the heating rate. Three regions of thermal decomposition were observed. The maximum rates of mass loss were measured at the temperatures between 288°C and 362°C. The activation energies, which achieved average values between 75 and 80.7 kJ mol?1, were calculated from the obtained results by non‐isothermal, model‐free methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Summary A combination of high resolution thermogravimetric analysis coupled to a gas evolution mass spectrometer has been used to study the thermal decomposition of liebigite. Water is lost in two steps at 44 and 302°C. Two mass loss steps are observed for carbon dioxide evolution at 456 and 686°C. The product of the thermal decomposition was found to be a mixture of CaUO4 and Ca3UO6. The thermal decomposition of liebigite was followed by hot-stage Raman spectroscopy. Two Raman bands are observed in the 50°C spectrum at 3504 and 3318 cm-1 and shift to higher wavenumbers upon thermal treatment; no intensity remains in the bands above 300°C. Three bands assigned to the υ1 symmetric stretching modes of the (CO3)2- units are observed at 1094, 1087 and 1075 cm-1 in agreement with three structurally distinct (CO3)2- units. At 100°C, two bands are found at 1089 and 1078 cm-1. Thermogravimetric analysis is undertaken as dynamic experiment with a constant heating rate whereas the hot-stage Raman spectroscopic experiment occurs as a staged experiment. Hot stage Raman spectroscopy supports the changes in molecular structure of liebigite during the proposed stages of thermal decomposition as observed in the TG-MS experiment.  相似文献   

9.
The influence of phase transition (PT) on the process of thermal development of a latent image arising after X-ray and uv irradiation of ammonium perchlorate (AP) crystals has been studied. Despite the production of a large number of new dislocations accompanying PT, it essentially does not influence the thermal development: The developed image does not smear at PT, remaining as clear as before it. By comparing mirror-symmetric surfaces of cleavage planes of AP crystals, it has been shown that at doses of X-ray and uv irradiation sufficient for obtaining an image, no production of new dislocations was observed in AP crystals. It is suggested that latent image arises due to formation during irradiation of chlorine oxidic products of radiolysis: ClO3, ClO2, and ClO as well as the corresponding ions ClO?, ClO?2, and ClO?3, i.e., initiators of AP low-temperature decomposition.  相似文献   

10.
The thermal decomposition and hydrolysis of 2,2′-azobis(2-amidinopropane) were examined as functions of pH. The rate of decomposition decreased with increasing pH. The specific rates at 60°C were 3.85 × 10?5 1/sec at pH 0.90 and 2.5 × 10?5 1 see at pH ≥ 8.5. The hydrolysis in alkaline solution yielded 2,2′-azobis(2-carbamylpropane) which was stable to thermal decomposition. The relation between the specific rate of hydrolysis kh′ and the concentration of hydroxyl ion was obtained as kh′ = 4.0 × 10?2 [OH]0.50 1/sec at 60°C. In alkaline solution, the rate of hydrolysis was considerably larger than that of thermal decomposition. A mechanism for this hydrolysis is propesed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号