首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A study was made of the loss of double bonds in equibinary (1,4-1,2) polybutadiene (EB) and in polybutadienes with 30% 1,2, 70% 1,4 (FI), and 10% 1,2, 90% 1,4 (DI) double-bond content, when heated in vacuum under nonpyrolytic conditions (temperature range 220–280°C). These polymers were found to undergo second-order loss of 1,2 unsaturation with similar activation energies (Ea = 34.0 ± 3 kcal/mole), by analogy to the previously reported thermally induced loss of double bonds in 1,2-polybutadiene (VB) (Ea = 33.6 ± 3 kcal/mole). Moreover, EB and FI exhibited also second-order loss of 1,4 unsaturation, with Ea ca. 36 and 40 kcal/mole, respectively, while DI showed negligible loss of 1,4 unsaturation below 260°C, in common with cis-1,4-polybutadiene (CB) (with 2% 1,2 double bonds) examined earlier. The loss of 1,2 double bonds in the various polybutadienes with different vinyl contents is accompanied by substantial methyl production, ranging from about one methyl group formed for every 4–5 vinyl units lost in VB, to one methyl for every two vinyls lost in EB, and to almost one methyl for each vinyl lost in DI or CB. Mechanisms are proposed for the thermally induced loss of 1,2 and 1,4 unsaturation in various polybutadienes and for the accompanying methyl production.  相似文献   

2.
The microstructural changes that occur in cis and trans forms of 1,2-poly(1,4-hexadiene) during methylene blue-photosensitized oxidation were examined by infrared (IR) and 13C-NMR spec-troscopy. The singlet oxygenation of these polymers yielded the expected allylic hydroperoxides accompanied by double bond shifts to new vinyl and trans-vinylene double bonds. The photosensitized oxidation exhibited zero-order kinetics; the relative rates for the cis- and trans-1,2-poly(1,4-hexadiene)s were approximately 3.8:1.0.  相似文献   

3.
The homopolymerization of trans-1,4-hexadiene, cis-1,4-hexadiene, and 5-methyl-1,4-hexadiene was investigated with a variety of catalysts. During polymerization, 1,4-hexadienes undergo concurrent isomerization reactions. The nature and extent of isomerization products are influenced by the monomer structure and polymerization conditions. Nuclear magnetic resonance (NMR) and infrared (IR) data show that poly(trans-1,4-hexadiene) and poly(cis-1,4-hexadiene) prepared with a Et3Al/α-TiCl3/hexamethylphosphoric triamide catalyst system consist mainly of 1,2-polymerization units arranged in a regular head-to-tail sequence. A 300-MHz proton NMR spectrum shows that the trans-hexadiene polymer is isotactic; it also may be the case for the cis-hexadiene polymer. These polymers are the first examples of uncrosslinked ozone-resistant rubbers containing pendant unsaturation on alternating carbon atoms of the saturated carbon-carbon backbone. Polymerization of the 1,4-hexadienes was also studied with VOCl3- and β-TiCl3-based catalysts. Microstructures of the resulting polymers are quite complicated due to significant loss of unsaturation, in contrast to those obtained with the α-TiCl3-based catalyst. In agreement with the literature, there was no discernible monomer isomerization with the VOCl3 catalyst system.  相似文献   

4.
In order to get information on the radiolytic changes in 1,2-polybutadiene (1,2-PB) the sol and gel fractions, the conversion of double bonds, the structure and concentration of radicals, the formation of dienes and the formation of gaseous products were measured. In addition, the dose rate dependence and temperature dependence for the conversion of double bonds were determined. G values for double bond conversion depend on molecular weight and range from 20 to 200. G values for crosslinking are about 10. A mechanism for the double bond conversion is proposed which involves initiation by a transformation of the primary radical ion in the vinyl group into a carbonium ion and a radical. This is supported by ESR measurement. Reaction of the carbonium ion with a vinyl group in the same chain gives rise to cyclization, whereas reaction with a vinyl group in a neighboring chain results in crosslinking. A comparison of the G values for conversion of double bonds with the G values for crosslinking shows that the formation of cyclic rings exceeds the formation of crosslinks by a factor of about 10. The corresponding values in 1,4-cis- and 1,4-trans-polybutadiene are much smaller [G(cl) ? 2; G(db) ? 7]. The pendent vinyl groups in 1,2-polybutadiene therefore are more reactive than the vinylidene groups in 1,4-polybutadienes.  相似文献   

5.
Solid-state 13C NMR spectroscopy has been used to determine the decrease in C?C bonds, formation of crosslinks and cis to trans isomerization during the γ irradiation of (a) > 99% cis, 1,4-polybutadiene, (b) 54% trans, 41% cis, 1,4-polybutadiene, and (c) 86% 1,2-polybutadiene. G(-cis C?C) and G(-trans C?C), were similar and decreased with dose from ≈ 40 for 0-1 MGy to 5 for 5-10 MGy. G(-double bonds) and G(crosslink) were comparable, indicating that crosslinking occurred through the double bonds. G(crosslink) was much higher than values derived from physical properties, confirming that NMR measures the total of inter- and intramolecular crosslinking (cyclization). The 1,2 polybutadiene was much more sensitive to crosslinking, and a value of G(-C?C) = 240 was obtained at low doses. Crosslinking evidently proceeds by a kinetic chain reaction in all three types of polybutadiene.  相似文献   

6.
Epoxidation of syndiotactic 1,2-polybutadiene with peracids   总被引:1,自引:0,他引:1  
The epoxidation of syndiotactic 1,2-polybutadiene (84 and 16% 1,2 and 1,4 units, respectively) with carboxylic peracids prepared in situ and m-chloroperbenzoic acid was studied. In the course of epoxidation in the presence of carboxylic peracids, oxirane groups are formed only through epoxidation of double bonds in the macromolecular backbone, whereas m-chloroperbenzoic acid is responsible for the chemical modification of 1,2 and 1,4 units of polybutadiene. The basic kinetic parameters of 1,2-polybutadiene epoxidation with peracids of various chemical structures were determined.  相似文献   

7.
Polycyclic aromatic hydrocarbon (PAH) structures with suitable electron-withdrawing groups are useful building blocks for developing optical and electron-transporting materials. Here, we report the application of a double benzannulation process to the syntheses of PAH diimides with enlarged π-frameworks featuring a central anthracene moiety. The preparations are realized by copper-catalyzed [4+2] cycloaddition of ethynyl-substituted aromatic dicarboximide to 2,5-bis(phenylethynyl)terephthalaldehyde, followed by intramolecular photocyclization or direct arylation via Heck cross coupling. A central symmetric benzo[1,2-k:4,5-k′]-bis(fluoranthene)-3,4,12,13-tetracarboxyl diimide (BFDI) is acquired, with the single crystal structure revealing its completely planar polycyclic skeleton. Such a shape-persistent PAH expectedly exhibits a tendency to stack face-to-face and forms J-aggregates. Moreover, BFDI can be difunctionalized site-selectively at the reactive 9 and 10 positions of the anthracene unit and then applied to prepare conjugated polymers. When coupled with 1,4-diketopyrrolo[3,4-c]-pyrrole (DPP) via thiophene and dithiophene linkers, two polymers with significantly broadened absorption bands extended to the near-infrared regime are obtained, evidencing the effective π-conjugative extension ability of BFDI unit.  相似文献   

8.
Flash pyrolysis between 500 and 600° of polyisoprenes with the three types of unit (1,4, 3,4 and 1,2) essentially yields isoprene and two cyclic dimers, viz. dipentene and 3,4-dimethyl, 4-vinyl, cyclohexene. These dimers are characteristic of 1,4 and 3,4 units respectively. The yield of dipentene is maximum when the 1,4 units are contained in long blocks; it is formed preferentially by cyclization of the biradical formed from two adjacent 1,4 units. The yield of the other dimer is maximum when the chain contains isolated 3,4 units; it is formed preferentially by Diels-Alder condensation between free isoprene and the pendant isopropenyl group of a 3,4 unit following chain scission. The 1,2 units thermally depolymerize to isoprene. Polyisoprenes made with alkaline earth metals are block copolymers of 1,4 and 3,4 units; polymers made with Ziegler-Natta catalysts have a random microstructure.  相似文献   

9.
This article relates to functionalized polypropylene with high molecular weight and high crystallinity. The chemistry involves the hydroboration of poly(propylene-co-1,4-hexadiene) with borane reagents, such as diborane and 9-BBN. In turn, the borane-containing polymers are very versatile and can be easily converted to various functionalized polymers under mild reaction conditions. Despite the heterogeneous reaction conditions, both hydroboration and interconversion reactions were very effective using appropriate solvents. Apparently, the double bonds in the side chains are located in the amorphous phase and are ready for reaction with reagents. Overall, this functionalization process preserves the molecular weight and most of the crystallinity of poly(propylene-co-1,4-hexadiene). © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The addition chlorination of cis-1,4-polybutadiene in the presence of a variety of aryl nucleophiles resulted in the formation of head-to-head poly(vinyl chloride) with pendant aromatic functional groups. Chlorination in methylene chloride solution with benzoic acid gave chlorinated polymers with pendant benzoate esters. Chlorination in the presence of phenol and benzhydrol provided polymers with pendent phenyl and diphenyl methyl ethers, respectively. Acetophenone participated during chlorination to affored polymer with pendant α-chloroether groups, while benzonitrile gave a polymer with pendant imidoyl chlorides. The extent of participation of these nucleophiles was estimated from elemental analysis and NMR spectral data, and the effect of aryl substitution on density, glass transition temperature, and linear coefficient of thermal expansion was determined. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Photoreactions of maleic anhydride (MAH) with unsaturated olefinic polymers such as 1,2-polybutadiene, 1,4-polybutadiene, block copolymer of styrene and butadiene, polystyrene, poly(styrene-co-isoprene), and poly(styrene-alt-methyl methacrylate) were investigated in air. When the polymers have olefinic unsaturation, the addition of MAH to the polymers in homogeneous solutions proceeded efficiently by a chain mechanism, and the quantum yield of the photoaddition of MAH was greater than unity under irradiation at λ > 310 nm. From the effects of solvent and photosensitizer, a radical chain mechanism involving crosslinking of the polymers by MAH molecules was suggested. Together with the spectroscopic results, the reaction mechanism was discussed. The photoaddition reaction was then applied to the surface photomodification of polymer films. Photoreactions were conducted at the interphase between solid polymer and acetone solution of MAH and also at the interphase between solid polymer and gaseous MAH. Irradiation by a 300-W high-pressure mercury lamp could bring about considerable modification of the surface properties of the polymers, which then show improved wettability and dyeability. From the oxygen permeation experiments, the present interfacial phototreatment was shown to provide a double-layered polymer film in which one side of the film is polar and hydrophilic while the other side is nonpolar and hydrophobic.  相似文献   

12.
Solutions of crystalline, high-melting trans-1,4 polybutadiene (trans-PB), trans-1,4 mix 1,2 butadiene-piperylene copolymer (BPC, low piperylene content), and isotactic trans-1,4 piperylene (trans-PP) were partly hydrochlorinated under mild conditions with gaseous HCl. Glass transition and melting temperatures were strongly affected by the addition of HCl. Several hydrochlorinated trans-PB and -BPC were semicrystalline or amorphous elastomers, susceptible to reversible crystallization when stretched. The straininduced crystallinity was similar to that shown by trans-polybutadiene sequences, particularly in the form that is unstable in bulk at room temperature (form II). The addition of HCl to the asymmetric double bond in trans-PP occurs in a stereoselective way, according to 13C-NMR. under the experimental conditions of the present study the occurrence of side reactions was observed; these reactions decrease the polymer unsaturation to a lower level than that calculated by the amount of HCl added to the polymer.  相似文献   

13.
An infrared and NMR study was made of the microstructural changes produced in thin films of purified cis- and trans-1,4-polyisoprene when irradiated with ultraviolet light in vacuo at room temperature. The major photochemical processes observed were cis–trans isomerization and loss of 1,4 double bonds, the latter process being accompanied by the formation of vinylidene and vinyl double bonds as well as some endlinking. Very surprisingly, the loss of original double bonds contributed also to a novel photocyclization which gave rise to cyclopropyl groups in the polyisoprene chain. The isomerization and the formation of cycloprophyl groups are presumed to proceed through triplet and biradical states of the 1,4 double bonds, while the vinylidene and vinyl double bonds must result from chain repture at the carbon–carbon bond joining successive isoprene units. Hydrogen abstraction and double-bond migration are of neglible importance in the overall photochemistry of polyisoprene.  相似文献   

14.
Chlorine-containing polymeric products with a degree of functionalization of up to 70% are synthesized through the hydrochlorination of syndiotactic 1,2-polybutadiene via carbon-carbon double bonds. The introduction of chlorine atoms into polydiene units causes substantial changes in the viscosity of polymer solutions, the flowability of the polymer melt, the glass-transition and flow temperatures, and the thermal stability of polymers. The hydrochlorinated derivatives of syndiotactic 1,2-polybutadiene demonstrate good adhesion with respect to steel and can be used in adhesive compositions.  相似文献   

15.
A study of the effects of ozonation on polybutadiene, polyisoprene, and several related hydrocarbon elastomers has shown that elastomers containing di-substituted double bonds (e.g., cis-1,4-polybutadiene) give crosslinked products as well as chain scission products in nonpolar solvents, whereas those containing tri-substituted double bonds (e.g., cis-1,4-polyisoprene) give chain scission products only. Both types of elastomer, however, give only chain scission products in polar solvents. Further investigation of the ozonation of elastomers, including the effect of ozonides of monoolefins and the solvent effect has led us to postulate that the chain scission involves the attack of a second ozone molecule on the preformed ozonide, and, the crosslinking is due to the attack of the biradical carbonyl oxide on the rubber.  相似文献   

16.
This study concerns the influence of 3,4 and 1,2 addition in cyclic polyisoprenes on the extinction coefficients of the absorption bands at 890 and 910 cm?1 due to out-of-plane vibrations of ?CH2 of the isopropenyl and vinyl groups (correspoding, respectively, to 3,4 or 1,2 addition). In contrast to analogous bands characteristic of 1,4 addition (especially in the case of cis-1,4 units of polybutadiene), the shape, position, and intensity of these bands are not influenced by changes in the structure of the macromolecular chain. The extinction coefficients of both bands did not change substantially, although the overall presence of both linear and cyclic forms varied over a wide range. It can be assumed, therefore, that the influence of configurational changes upon the intensity of the absorption bands of out-of-plane vibrations for double bonds is not a general phenomenon.  相似文献   

17.
Samples of head-to-head polypropylene have been prepared by the hydrogenation of two polydienes; 1,4-poly(2,4-hexadiene) and 1,4-poly(2,3-dimethyl-1,3-butadiene). Glass transition temperatures were found to be marginally lower than for conventional polypropylene suggesting that the head-to-head placements in the chain increased the polymer flexibility.  相似文献   

18.
Abstract

In the last decade, there has been a tremendous increase in the number of reports on transition metal complex-mediated butadiene homo- and copolymerization. While typical classical titanium, nickel, cobalt, and neodymium based catalysts have been almost exclusively applied to the production of high cis-1,4-polybutadiene, alternative catalyst systems are currently being developed which enable tuning of the polybutadiene microstructure and permit defined changes in polymer properties such as molecular weight distribution and changes in the polymer glass temperature. Besides new products such as high trans-1,4-polybutadiene or a polymer containing a defined amount of 1,2-polybutadiene, there are butadiene copolymers with different amounts of styrene, isoprene, or ethylene. These new materials should lead to new applications especially in the area of tires, high impact polystyrene (HIPS), and ABS. This review elucidates the new developments in the area of transition metal complex-based butadiene homo- and copolymerization focusing mainly on the transition metal catalyst, the polymerization process and the resulting polymers. Mechanistic details are discussed briefly and wherever useful for the understanding of the polymerization reaction.  相似文献   

19.
Highly crystalline syndiotactic 1,2-polybutadiene (s-PB) having melting point (mp) up to 216°C was obtained by using a Co(acac)3-AIEt3-CS2 catalyst. The polymer with mp 208°C was found to have 99.7% 1,2 content and 99.6% syndiotacticity by 1H and 13C-NMR measurements. The s-PB can be molded by addition of a stabilizer such as 2,6-di-t-butyl-4-hydroxymethylphenol into fiber, film, and various shaped articles. The physical properties presented in the present article include stress-strain and dynamic mechanical behavior. The highly crystalline syndiotactic 1,2-polybutadiene was applied to a carbon fiber and UBEPOL VCR (cis-1,4-polybutadiene reinforced by fibrous syndiotactic 1,2-polybutadiene).  相似文献   

20.
The 1H and 13C-NMR spectra of highly crystalline syndiotactic 1,2-polybutadiene (s-PB) are discussed in order to clarify the mechanism of butadiene polymerization with cobalt compound–organoaluminum–CS2 catalysts. Cis opening of the double bonds in the syndiotactic polymerization is affirmed by the study of the copolymer from perdeuteriobutadiene and cis,cis-1,4-dideuteriobutadiene. S-PB (mp 210°C) has 99.7% 1,2 units, 0.3% isolated cis-1,4 units, and 99.6% syndiotacticity. Polymer ends (2-methyl-3-butenyl group and conjugated diene structure) are also determined. The differences in free energy of activation between 1,2 and cis-1,4 propagation and between syndiotactic and isotactic propagation are 14.0 and 9.6 kcal/mol, respectively, for Co(acac)3-AlEt3-AlEt2Cl-CS2, and 6.7 and 5.7 kcal/mol, respectively, for the aluminum-free Co(C4H6)(C8H13)CS2 system. The conformation of s-PB in o-dichlorobenzene at 150°C is described by the sequence (tt)1.6(gg)(tt).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号