首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
王志刚 《高分子科学》2013,31(9):1276-1283
In this work the nucleation and growth of spherulites for the below polylactide (PLA) layer in poly(ε-caprolactone)/polylactide (PCL/PLA) double-layer films during isothermal crystallization at various temperatures above the melting point of PCL have been investigated by using polarized optical microscopy (POM). It is revealed that two types of spherulitic morphologies are observed in PCL/PLA double-layer films. One is the well defined highly birefringent spherulites, and the other one is the coarse spherulites. It is interesting to find that the spherulitic growth rate of the coarse spherulites is higher than that of the well defined spherulites. It is thought that the coarse spherulites nucleate and grow with the assistance of the interfaces between the PCL and PLA layers, and the well defined highly birefringent spherulites only nucleate and grow in the PLA layer.  相似文献   

2.
(Hydroxypropyl)cellulose (HPC) is known to form birefringent liquid-crystalline phases at elevated polymer concentrations in either water or isobutyric acid (IBA). The HPC concentration at which the polymeric phase exhibits birefringence decreases as the IBA content in mixed H2O/IBA solvents decreases, even though the concentration ?ic for the formation of an ordered phase of HPC in water is greater than that in IBA. Water is a spectator component and apparently does not participate in the formation of a birefringent phase when IBA is present. A birefringent phase forms once the concentration of HPC in the solution omitting the H2O equals the ?ic of binary HPC/IBA solutions for temperatures from 23 to 95°C. The strong preferential affinity of HPC for IBA is visually evident as an HPC coagulate separates from dilute solution when the solvent mixture contains as little as 5% IBA. The coagulate dissolves to give a monophasic isotropic solution as the IBA content in the solvent is increased. A heterogeneous system in which a clear supernatant fluid covers a pearly white polymeric phase forms when the solvent mixture is immiscible and the HPC content is less than 50%. At high HPC content, the classical appearance associated with concentrated HPC solutions is seen. The optical and rheological properties of the heterogeneous systems are compared with those of homogeneous solutions at several HPC concentrations.  相似文献   

3.
Using in‐house synthesized poly(dodecamethylene terephthalate) (P12T) as a model, periodic extinction‐banded spherulites melt‐crystallized at high Tcs (100–115 °C) are expounded in terms of growth mechanism. The extinction‐banded spherulites wildly differing from the usual blue/orange double ring‐banded spherulites are composed of all flat‐on discrete single‐crystalline lamellae packed like roof shingles (or fish scales) along the circularly curved bands and the lamellae in the extinction bands are flat with a lozenge shape with no continuous twisting at all. For P12T films of more than 10 µm crystallized at Tc = 105–115 °C, no periodic bands were seen, and all spherulites were ringless, where periodic growth precipitation of crystals to extinction does not occur until impingement. Extinction bands in the P12T spherulites with the inter‐ring spacing steadily decrease with decreasing film thickness, because for thinner films (submicrons to 2 µm), draining or depletion of available molten species takes place more frequently, leading to bands of smaller inter‐ring spacing. The petal‐like extinction bands are discussed and analyzed in detail using 3D AFM imaging. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 601–611  相似文献   

4.
The crystalline morphology of a thermotropic aromatic polyester crystallized from a nematic melt was investigtated by means of polarized optical microscopy (POM) and scanning electron microscopy (SEM). Due to POM measurements it was found that spherulites of two different types are formed within the two different temperature regions. When Tc was exceeding 170°C, spherulites of type‐1 showing a negative birefringence grew with a radial fibrillar morphology and exhibited a clear Maltese‐cross pattern. The radius growth rate of type‐1 spherulites was about 2.2 μm/min at 185°C. When Tc was smaller than 160°C, spherulites of type‐2 were formed and exhibited a radially outward growing structure but no evident Maltese‐cross pattern. These spherulites could be seen by the naked eyes due to their size reaching several millimeters. SEM observations revealed that the spherulites of type‐1 exhibited a ripple‐like homocentric morphology with periodical compact fibrils having a diameter of about 150 nm perpendicular to the radial direction. In contrast, the spherulites of type‐2 exhibited, as apparent from performed SEM images, radially growing crystallites of about 500 nm in size with no periodicity in the radial direction.  相似文献   

5.
A method for catalytic regio- and enantioselective synthesis of trifluoromethyl-substituted and aryl-, heteroaryl-, alkenyl-, and alkynyl-substituted homoallylic α-tertiary NH2-amines is introduced. Easy-to-synthesize and robust N-silyl ketimines are converted to NH-ketimines in situ, which then react with a Z-allyl boronate. Transformations are promoted by a readily accessible l -threonine-derived aminophenol-based boryl catalyst, affording the desired products in up to 91 % yield, >98:2 α:γ selectivity, >98:2 Z:E selectivity, and >99:1 enantiomeric ratio. A commercially available aminophenol may be used, and allyl boronates, which may contain an alkyl-, a chloro-, or a bromo-substituted Z-alkene, can either be purchased or prepared by catalytic stereoretentive cross-metathesis. What is more, Z-trisubstituted allyl boronates may be used. Various chemo-, regio-, and diastereoselective transformations of the α-tertiary homoallylic NH2-amine products highlight the utility of the approach; this includes diastereo- and regioselective epoxide formation/trichloroacetic acid cleavage to generate differentiated diol derivatives.  相似文献   

6.
Samples of isotactic polypropylene (PP) were zone-solidified in temperature gradients up to 300°C/cm at growth rates down to 3 μm/min. Oriented α-type spherulites were obtained only by nucleation. While β nucleation is extremely rare, the β phase is easily initiated by growth transformations along the oriented α front. Since the β phase was found to grow considerably faster than the α phase, the α-to-β transformation points diverge across the sample, interrupting growth of the oriented α fibrils. This causes subsequent nucleation to yield teardrop-shaped α spherulites. Differential scanning calorimetry (DSC) studies of zone-solidified PP show the β-phase to be favored by slow growth rates, high temperature gradients, and large degrees of superheat in the melt—all of which tend to suppress nucleation. Differential thermograms of largely β-PP obtained at a heating rate of 1°C/min show the actual melting and recrystallization of the β spherulites into the α form.  相似文献   

7.
Only a single type of circular circumferential crack is conventionally reported for poly(l-lactic acid) (PLLA). In this study, PLLA samples were found to exhibit as many as four crack types of different directions and patterns, which cannot be feasibly explained simply by the directional difference in coefficients of thermal expansion. Depending on crystallization temperature (T c), PLLA crystallizes into ringless or ring-banded spherulites, whereas the crack patterns are dramatically different in these two types of spherulites. In ring-banded spherulites of PLLA crystallized at intermediate T c, two uniquely different crack types are present: (1) twin circumferential cracks coinciding with the dark–bright and bright–dark boundary and (2) radial short-segmental voids coinciding on the bright bands in spherulites. The radial short-segmental cracks on the bright band of ring-banded spherulites may be caused by PLLA crystals of radial direction with various twisting that contract laterally upon cooling. Only circumferential cracks are present in PLLA crystallized into ringless spherulites, where concentric continuous circumferential cracks are present in the ringless spherulites at low T c with finer lamellae, but discontinuous and irregular circumferential cracks are present in the ringless spherulites at high T c with coarse lamellae. Although all cracks are triggered by cooling from T c, all evidences indicate that the crack patterns and types are highly associated with the lamellar orientation, patterns, and coarseness in spherulites.  相似文献   

8.
The morphology of poly(butylene terephthalate) (PBT) crystallized from the melt at various temperatures was studied by small-angle light scattering, polarizing microscopy, and wide-angle x-ray diffraction. Spherulites with a maltese cross at 45° to the polars formed at lower temperatures while spherulites having an apparently higher melting point with a maltese cross along the polars (0°–90°) formed at higher temperatures. The spherulite size and crystallinity increased with increasing crystallization temperature. The Hv scattering patterns arising from the spherulites formed at lower temperature showed intensity maxima at azimuthal angles of 0° and 90°, while those obtained at higher temperatures showed the more common 45° intensity maxima. Microtomed samples from molded PBT bars showed spherulites with a 45° maltese cross which changed to a 0°–90° maltese cross upon heating just prior to melting. The skin-core effect due to varying thermal histories in these molded bars was clearly observed. Solvent crystallized films contained positive 0°–90° spherulites. Some changes occurring upon uniaxial stretching of PBT films are also discussed.  相似文献   

9.
Phase equilibria were experimentally studied in the system LiF–KI–KF–K2CrO4, which is the stable tetrahedron of the quaternary reciprocal system Li, K∥F, I, CrO4. Differential thermal analysis revealed the compositions and transformation temperatures at the eutectic point E 488 (L ? LiF + KF + KI + α-K2CrO4) and the peritectic point P 510 (L + K3FCrO4 ? KI + α-K2CrO4 + KF). A computer model of the phase complex of the system was built, which can predict phase transformations at an arbitrary composition in the system. Isothermal sections of the systems were constructed, using which the phase composition at the temperature of the section can be calculated.  相似文献   

10.
Birefringent materials, which can modulate the polarization of light, are almost exclusively limited to oxides. Peroxides have long been overlooked as birefringent materials, because they are usually not stable in air. Now, the first peroxide birefringent material Rb2VO(O2)2F is reported, the single crystals of which keep transparency after being exposed in the air for two weeks. Interestingly, Rb2VO(O2)2F does not feature an optimal anisotropic structure, but its birefringence (Δn=0.189 at 546 nm) exceeds those of the majority of oxides. According to the first-principles calculations, this exceptional birefringence should be attributed to the strong electronic interactions between localized π orbital of O22− anions and V5+ 3d orbitals, which may be also favorable to the stability in the air for Rb2VO(O2)2F. These findings distinguish peroxides as a brand-new class of birefringent materials that may possess birefringence superior to the traditional oxides.  相似文献   

11.
A theory is developed by use of the correlation function approach for calculating both the Hv and Vv intensity of scattered light for a concentrated assembly of spherulities. The scattering becomes a function of the radial and tangential polarizabilities of the spherulite αr and αt, the polarizability αm of the medium, surrounding the spherulites, and the volume fraction ?s of spherulites. The “effective polarizability of the surroundings” αs, which appeared in previous theories, becomes function of these variables. The theory can explain, for example, why the Vv scattered intensity passes through a maximum during the course of crystallization.  相似文献   

12.
In the present work, cordierite glass–ceramic was prepared via sol–gel method using TEOS, AlCl3·6H2O, MgCl2·6H2O as starting materials. Different steps of phase transformations to cordierite have been studied by DSC and XRD. Various phases have been formed at different heat-treatment temperatures. Addition of CaO led to an increase in both the formation rate and the intensity of α-cordierite. Sinterability of the samples was determined too. The results showed that high content of CaO improved sintering. Morphology of hexagonal prism for α-cordierite was displayed by SEM.  相似文献   

13.
Birefringent materials, which can modulate the polarization of light, are almost exclusively limited to oxides. Peroxides have long been overlooked as birefringent materials, because they are usually not stable in air. Now, the first peroxide birefringent material Rb2VO(O2)2F is reported, the single crystals of which keep transparency after being exposed in the air for two weeks. Interestingly, Rb2VO(O2)2F does not feature an optimal anisotropic structure, but its birefringence (Δn=0.189 at 546 nm) exceeds those of the majority of oxides. According to the first‐principles calculations, this exceptional birefringence should be attributed to the strong electronic interactions between localized π orbital of O22? anions and V5+ 3d orbitals, which may be also favorable to the stability in the air for Rb2VO(O2)2F. These findings distinguish peroxides as a brand‐new class of birefringent materials that may possess birefringence superior to the traditional oxides.  相似文献   

14.
The dynamic mechanical properties of a well-characterized series of homogeneous ethylene/1-octene copolymers with different random hexyl branch contents and prepared using different cooling conditions have been examined using dynamic mechanical analysis (DMA). It was confirmed that the relaxation behavior of copolymers varied continuously with the branch content: the magnitude of the β relaxation increased with branch content while the intensity of the α relaxation decreased with the branch content; both relaxation temperatures decreasing with increasing branch level in the copolymers. Copolymers prepared at different cooling conditions were further examined and strikingly continuous changes were found for the first time. The β relaxation was shown to correlate to the amorphous region, while the α1 and α2 relaxations can be clearly differentiated for some samples and are assumed to be associated with the interlamellar slip and intra-crystalline c-shear processes respectively. With increasing cooling rate, the relative intensity of α1 relaxation to α2 relaxation was found to decrease while the β relaxation did not change. The most informative data is determined from deconvolution of tan δ spectra. In higher crystallinity polymers the α1 and α2 relaxations are closely related in activation energy but have different temperature locations. For lower crystallinity systems, where the α1 relaxation cannot be observed, the α2 and β relaxations are closely linked, with activation energies approaching one another. These results show very clearly that, although the observed relaxation data can be separated through deconvolution into three separate peaks, the behaviors are closely linked. Presumably, this a clear reflection of the role of tie molecules in binding phases together and in influencing dynamic mechanical behavior. A clear change of behavior has also been observed in the β relaxation when a distinct amorphous phase exists outside of the spherulites, confirming the general belief that the crystalline phase influences the amorphous phase when it is confined within a spherulite. Again, this behavior is reflecting the role of tie molecules in binding together the nanocomposite structure of a spherulite.  相似文献   

15.
Previous theoretical calculations of the scattering from spherulites are for isolated complete spheres, whereas most spherulitic polymer samples contain truncated spherulites as a result of impingement by other spherulites. The effect of such truncations on the scattering patterns for two-dimensional spherulites is explored as a function of the size, number and location of the truncations. The scattering of severely truncated spherulites is modified, particularly with regard to the enhancement of the HV scattering at small angles. However, reasonable amounts of truncation corresponding to experimentally observed structures do not produce appreciable modification of the pattern so that the neglect of truncation will not lead to appreciable error in the estimated spherulite size from light scattering.  相似文献   

16.
Miscible blends of three crystalline polymers, namely poly(butylene succinate) (PBS), poly(ethylene succinate) (PES), and poly(oxyethylene) (POE), exhibited interpenetrating spherulites, where a spherulite of one component grows inside the spherulites of other components. PBS and PES were immiscible above the melting points, Tm, of these substances, while ternary blends with POE showed miscibility, which depended on the molecular weight of POE. PBS and PES exhibited the same spherulitic growth process as in a miscible binary blend when they were crystallized from a homogeneous ternary melt. Spherulites of PBS, which is the highest‐Tm component, filled the whole volume first when a miscible ternary blend was quenched below Tm of POE, the lowest‐Tm component. Then, the blends showed either two types of crystallization processes. One was successive nucleation and growth of PES and POE spherulites, that is, PES nucleated and developed spherulites inside the PBS spherulites and then POE spherulites grew inside the interlocked spherulites of PBS and PES. The other was simultaneous growth and the formation of interpenetrating spherulites of PES and POE inside the PBS spherulites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 706–711, 2010  相似文献   

17.
The effects of spherulitic truncation on the Hv small-angle light-scattering (SALS) patterns are determined by computer simulation of spherulite nucleation and growth. The simulation is carried out for simultaneous and sporadic nucleation of two-dimensional spherulites and simultaneous nucleation of three-dimensional spherulites. The scattered intensity differences between truncated spherulites and round spherulites are determined as functions of the type of growth and the volume (or area) fraction of spherulites. Methods for the determination of certain geometrical characteristics of spherulites systems by SALS are developed. These characteristics include the volume (or area). fraction of spherulites, the average spherulite radius, and the average spherulite volume (or area). The results of this study are essential in the quantitative analysis of Hv SALS from spherulitic systems. The simulation process is readily extendable to the examination of other morphological phenomena by SALS.  相似文献   

18.
The spherulitic morphologies of poly(3-hydroxybutyrate) (PHB) crystallized isothermally from thin melt film with different crystallization temperatures were observed by means of polarized optical microscopy, optical microscopy, SEM, and atomic force microscopy techniques, and the kinetic behaviors were analyzed carefully in this work. It was found that the nonbanded spherulites could be observed at lower and higher crystallization temperatures, and the banded spherulites were formed usually at an intermediate range within experimental crystallization temperatures. The competition of the crystallization rate (v c) and the diffusion rate (v d) of melt molecules was employed to explain the transition of the spherulitic morphologies. It was considered that the change of the ratio of v d and v c would result in the transition of the spherulitic morphologies. The formation and development of the banded structure were discussed in detail. It was found that the band spacing was proportional to diffusion length of melt molecules and increased with increasing of crystallization temperature. The kinetic behaviors of PHB spherulites formed from the thin melt film with different crystallization temperatures were also discussed in this work.  相似文献   

19.
Surface morphology of positively or negatively birefringent spherulites in melt-crystallized neat poly(ethylene adipate) (PEA) vs. PEA blend with phenoxy was examined using atomic force microscopy (AFM), scanning electron microscopy, polarizing optical microscopy, thermal analysis, and wide-angle X-ray techniques. Their top-surface morphology in thin film forms was analyzed to fully expounded the lamellar assembly responsible for the opposite birefringence. Top-surface lamellar assemblies in positive/negative types of ringless spherulites (T c = 0, 15, 20, 40 °C) and also alternating birefringence of double-ring-banded spherulite (T c = 28 °C) of PEA/phenoxy blend were examined with AFM. From the results, spherulite’s positive and negative birefringence differs only in interior lamellar arrangements but not lattice geometries. Negative spherulites are composed of radially oriented edge-on lamellae, while positive spherulites are composed of bending/coiling edge-on lamellae. By contrast, the ring-banded spherulites can exhibit both negative and positive birefringence depending on the alternating radial and tangential lamellar arrangement. The addition of phenoxy into PEA could disrupt the regular lamellar bending and promote the singularity of edge-on lamellae; owing to that, the amorphous phenoxy induces looser arrangement of edge-on lamellae with phenoxy being in interlamellar/interfibrillar regions. The bulky linking pendent group phenoxy, with H-bonding capacity interacting with PEA, also disrupts the regularity of tangential–radial PEA lamellae to display a more zigzag pattern.  相似文献   

20.
Electron microscopy and x-ray diffraction data have been obtained on nylon 6 which has been crystallized from solutions in 1,6-hexanediol and 1,2,6-hexanetriol. Lamellar single crystals and spherulites of the γ form are obtained by crystallization from 1,2,6-hexanetriol. The morphology of the single crystals is different from that obtained from glycerine solutions. The spherulites of the γ form are composed of larger lamellae. Sheaflike crystals of the α form are obtained from both solvents. α-form and γ-form crystals both grow from 1,2,6-hexanetriol at appropriate crystallization temperatures. α-form crystals alone are obtained from 1,6-hexanediol solution at every crystallization temperature. The long periods measured by small-angle x-ray diffraction for the solution-grown crystals are in the range 56 to 66 Å. The melting behavior of the solution-grown crystals is examined and discussed. Effects of solvent on growth of the two crystalline forms from solution are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号