首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 24 毫秒
1.
溶剂热法制备Bi2S3纳米材料   总被引:4,自引:0,他引:4  
0引言纳米材料具有特殊的结构和性能,可广泛应用于化学、物理学、电子学、光学、机械和生物医药学等领域[1 ̄5]。其中一维或准一维纳米结构体系或纳米材料的研究既是研究其它低维材料的基础,又与纳米电子器件及微型传感器密切相关,是近年来国内外研究的前沿[6 ̄9]。近年来,人们虽然做了许多尝试来制备一维纳米结构材料,但合成这类材料特别是合成半导体一维纳米材料仍然是一个巨大的挑战。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著的不同[10 ̄12]。Bi2S3是一种重要的半导体材料,受…  相似文献   

2.
石墨与聚苯乙烯的纳米复合过程研究   总被引:24,自引:3,他引:21  
石墨具有电导率高、化学稳定性好等优点 ,被广泛应用于聚合物 石墨复合导电材料[1~ 3] .石墨作为聚合物导电填料一般以粉末形态居多 .用粉末状石墨填料往往需要较高的填充量才能得到理想的导电性能 .石墨也可以制备成膨胀石墨 ,将它与聚合物复合 ,可以大幅度降低石墨的填充量 .如一般粉末状石墨填料与聚合物复合制备的导电材料其逾渗阀值为 1 5 %~ 2 0 % ,电导率达到 1 0 -4 ~1 0 -7S cm[4 ] ;而若采用膨胀石墨方法 ,逾渗阀值则低于 3% ,电导率可达到 1 0 -2 S cm以上[5~ 7] .Pan等[7] 报道用膨胀石墨与聚合物复合得到纳米复合…  相似文献   

3.
单根聚苯胺纳米线导电性的研究   总被引:1,自引:0,他引:1  
纳米线(管)的模板合成和导电原子力显微镜(C-AFM)结合是一种近期发展起来研究单根一维纳米结构及阵列导电性的有效方法. 本文利用C-AFM测量了阳极氧化铝(AAO)模板电化学合成制备的单根聚苯胺纳米线的电导率, 研究了直径、氧化还原态对单根聚苯胺纳米线电导率的影响. 从I-V曲线可以看到, 其导电性质与半导体类似,但又不同于半导体. 尚未观察到反向击穿现象,可能原因是, 在一定的反向偏压下的离子脱嵌使得它由部分氧化态(导电态)转变为还原态(绝缘态);电导率随纳米线直径减小而线性地增加;以ClO4离子掺杂的氧化态和还原态比部分氧化态的电导率低二个数量级.  相似文献   

4.
纳米材料,包括尺寸为纳米量级的超细微粒?线?薄膜?量子阱和超晶格等引起了人们广泛的重视 [1,2] ?其中 , 半导体纳米微粒和由其构成的纳米固体结构开辟了材料科学研究的新领域?硫化镉 (CdS) 作为一种重要的Ⅱ - Ⅵ族无机半导体材料 , 具有独特的光电性质 , 在光电化学电池和多相光催化反应中都有广泛应用?近年来 , 已有大量关于合成 CdS 纳米结构的文献报导 [3~12] , 所采用的方法如反胶束法?单分子膜法?自组装法以及电化学沉积法等 , 其中非水电解与模板技术相结合的制备方法引起了人们高度的重视并且被广泛的采用?自从 Baranski 等在上…  相似文献   

5.
CdS纳米粒子的水热微乳法制备   总被引:11,自引:0,他引:11  
0引言CdS是一种重要的Ⅱ-Ⅵ族半导体,其独特的光电化学性能引起人们的广泛关注,而其性能与晶粒尺寸、晶体结构等密切相关,因而CdS的纳米结构的研究备受关注[1 ̄3]。目前,制备CdS纳米粒子的主要方法有溶剂热法[4],化学浴沉积法[5],微乳液法[6]等。微乳液是合成球形纳米粒子的良好介质,具有实验装置简单,操作方便,应用领域广并且有可控制微粒的粒度等优点[7]。但其在室温条件下合成的CdS粒子的结晶性较差,严重影响其光电性能。Gan和Liu等[8]曾在NP5-NP9/PE/SOL微乳液中,在室温及水热条件下合成ZnS:Mn发光纳米材料,来提高在微乳液中制…  相似文献   

6.
葛学平  白如科 《化学进展》2007,19(9):1406-1412
本文对γ- 射线辐射条件下的活性自由基聚合反应研究及进展进行了综述。虽然γ- 射线辐射引发聚合反应通常是不可控的,但在有机硫化物,如二硫代羧酸酯或三硫代碳酸酯存在下,则成功地实现了可控/活性自由基聚合。聚合过程中聚合物分子量随单体转化率线性增长,不但可控,且分布窄,也可以用于合成嵌段共聚物。有机硫化物对聚合反应控制起着关键性作用,硫化物的结构对于γ- 射线辐射活性自由基聚合行为的影响显著。γ- 射线辐射聚合的突出优点是可在室温或更低的温度下实施,且不需要加入引发剂。在环硫化合物存在下,获得了环形聚合物;而且使热和光敏感的叠氮类单体实现了活性聚合。  相似文献   

7.
低频交流电沉积金纳米线阵列的AFM研究   总被引:3,自引:0,他引:3  
迄今,人们已采用许多方法制备纳米材料,如刻蚀技术、化学法和模板法等[1].其中,引起科学界广泛兴趣的模板法,在合成有序纳米材料上占有极其重要的地位.常用的模板有两种,一种是有序孔洞阳极氧化铝(Anodic Aluminum Oxide,AAO)模板[2],另一种是含有孔洞无序分布的高分子模板.AAO模板具有耐高温,绝缘性好,孔洞分布均匀有序,而且大小可控等特点[3].可以利用 AAO模板来制备各种纳米纤维和纳米管,如导电聚合物[4]、金属[5]、半导体[6]、碳[7]和其它一些材料.由于纳米材料的应用具有广阔的前景,如光催化、电化学、酶固定等方面,因而不同材料纳米线的制备备受关  相似文献   

8.
0引言导电聚合物/无机物纳米复合材料具有纳米材料和导电聚合物的共同特性,因此在电催化、二次充电电池材料、超级电容器材料等方面具有良好的应用前景[1]。聚噻吩(PTh)以及取代聚噻吩是导电聚合物领域中较早发现的具有环境稳定性和可加工性的材料之一。近年来,有关聚噻吩/无机物纳米复合材料的制备及其光电性能的研究倍受关注,Gebeyehu等[2]用PTh敏化纳米晶TiO2光伏电池,发现其光伏效率明显优于固态光伏电池;Jayant等[3]研究了PTh中的羧基基团的影响以及在纳米晶TiO2  相似文献   

9.
TiO2纳米微粒对聚苯胺性能的影响   总被引:26,自引:0,他引:26  
纳米微粒具有量子尺寸效应, 其光、电、声及磁等方面的性能与常规材料有显著的不同, 其中以TiO2纳米微粒的电荷载体、光电活性中心、光学微腔和光电特性等特征[1,2]尤为引人注目. 导电聚合物的纳米复合材料是纳米材料的研究热点之一, 在导电材料、电流体和高密度信息存储材料等方面具有良好的应用前景[3]. 在导电聚合物中, 聚苯胺(PANI)因其具有较高的电导率, 原料便宜, 稳定性好而成为目前最有希望获得实际应用的导电聚合物[4~6]. 将纳米微粒和PANI制成复合材料, 其光电性能等与PANI相比均有所改变. 目前已相继有PANI-ZrO2, PANI-MnO2, PANI-SiO2纳米复合材料的报道[7,8], 而有关PANI-TiO2研究工作尚少见报道. 本文制备了PANI-TiO2纳米复合材料, 通过红外光谱、紫外可见光谱及透射电镜等探讨了复合材料的微结构及性能.  相似文献   

10.
首先合成了两种带—SO3H官能团的Brφnsted酸离子液体([MIMPS][HSO4]和[PYPS][HSO4]),然后分别以这两种带—SO3H官能团的Brφnsted酸性离子液体做为掺杂剂,在无溶剂条件下通过机械化学聚合反应制备了掺杂导电态聚苯胺.由于带—SO3H官能团的Brφnsted酸性离子液体中H+可以单独以离子形式存在,因此可形成质子化导电态的翠绿亚胺盐,并以红外光谱、紫外可见-近红外、X-射线衍射、循环伏安和四探针技术等测试方法对聚苯胺进行了结构和性能表征.PANI-[MIMPS][HSO4]的结晶性、电导率和电化学活性要优于PANI-[PYPS][HSO4].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号