首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper supported on polymer‐coated magnetic nanoparticles was designed and synthesized as a separable heterogeneous catalyst. The catalyst was fully characterized using several techniques such as Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, scanning and transmission electron microscopies, X‐ray diffraction, vibrating sample magnetometry, thermogravimetric analysis and inductively coupled plasma atomic emission spectrometry. All results showed that copper was successfully supported on the polymer‐coated magnetic nanoparticles. Also, results showed that the synthesized material can be used as an efficient catalyst for the preparation of a series of 1,4‐disubstituted 1,2,3‐triazoles from corresponding halides, alkynes and sodium azide. The catalyst can be easily isolated from the reaction solution by applying an external magnet and reused for nine runs without any significant loss of catalytic activity.  相似文献   

2.
《Comptes Rendus Chimie》2016,19(3):314-319
A new catalyst based on metallophthalocyanine nanoparticles has been synthesized and characterized by scanning electron microscopy (SEM). The aqueous oxidation of alcohols to the corresponding carbonyl compounds (aldehydes and ketones) has been studied using tetra-n-butyl-ammonium-peroxo-monosulfate (n-Bu4NHSO5) as an oxidant and a catalytic system consisting of copper (II) phthalocyanine nanoparticles in water. The highly selective oxidation gave excellent yields of related aldehydes or ketones without remarkable over-oxidation of the carboxylic acids. Organic co-solvents, surfactants, and co-catalysts were not used in this catalytic strategy. This strategy was green and time effective. The oxidant's by-product (TBAHSO4) and catalyst can be efficiently recovered and reused several times without any significant change of catalytic activity.  相似文献   

3.
Palladium oxide nanoparticles supported on graphene oxide ‐ triethylsilane was found to be an effective reductive system for a broad range of reduction processes, including the reduction of various carbonyl compounds such as aromatic aldehydes to their corresponding alcohols or methyl arene compounds, aromatic ketones to their respective alcohols or saturated compounds, aromatic acyl chlorides to their reduced compounds. The desired products were obtained in good to excellent yields under mild conditions. The heterogeneous environmentally friendly catalyst can be easily separated from the reaction mixture through a simple filtration, facilitating purification of the prepared compounds.  相似文献   

4.
A simple, efficient and environmentally benign solid acid catalyst was prepared by anchoring a propyl sulfonic acid on the surface of silica‐coated magnetic nanoparticles by low cost precursors. The catalyst has been then engaged in the efficient β‐amino carbonyl compounds production via three component Mannich reaction under solvent free reaction condition at room temperature. After the completing the reaction, the catalyst was readily separated by external magnet and reused for 10 successive rounds of reaction, without any significant loss in catalytic efficiency. The solid acidic system presented reusable strategy for the efficient synthesis of β‐amino carbonyl compounds, simplicity in operation, and green aspects by avoiding toxic conventional catalysts under solvent‐free condition.  相似文献   

5.
A novel magnetic hybrid system containing nano‐magnetic Fe2O3 hollow spheres, silica shell, [pmim]Cl ionic liquid and silver nanoparticles was synthesized and characterized. The silver nanoparticles were prepared via biosynthesis using Achillea millefolium flower as reducing and stabilizing agent. The hybrid system was successfully used as an efficient and reusable catalyst for promoting green ultrasonic‐assisted A3 and KA2 coupling reactions as well as benzo[b]furan synthesis. It was found that decoration of the magnetic core with non‐magnetic moieties decreased the maximum saturation magnetization. However, the catalyst was still superparamagnetic and could be simply separated from the reaction mixture using an external magnet. The heterogeneous nature of the catalyst was also confirmed by studying its reusability and stability and the leaching of silver. Use of aqueous media, high yields, short reaction times, broad substrate tolerance and low required amount of catalyst are the merits of this protocol.  相似文献   

6.
A catalyst based on immobilization of a molybdenum(VI) Schiff base complex on γ-Fe2O3 magnetic nanoparticles has been synthesized and characterized. This catalyst was employed for the selective oxidation of alcohols to the corresponding carbonyl compounds in EtOH/H2O2. The catalyst can be easily separated from the reaction mixture by decantation using an external magnet and reused efficiently in five subsequent reaction cycles without any significant decrease in activity or selectivity.  相似文献   

7.
Superparamagnetic CuCl nanoparticles were prepared and identified as an effective heterogeneous catalyst for the tandem transformation of methylarenes and 1,3‐dicarbonyl compounds into the corresponding enole esters by the use of tert ‐butyl hydroperoxide as an external oxidant. The catalyst can be removed from the reaction medium simply by use of an external magnet. As a consequence, various derivatives of enol esters were synthesized in moderate to good yields.  相似文献   

8.
Nearly monodisperse poly(N ‐isopropylacrylamide‐co ‐acrylamide) [P(NIPAM‐co‐AAm)] microgels were synthesized using precipitation polymerization in aqueous medium. These microgels were used as microreactors to fabricate silver nanoparticles by chemical reduction of silver ions inside the polymer network. The pure and hybrid microgels were characterized using Fourier transform infrared and UV–visible spectroscopies, dynamic light scattering, X‐ray diffraction, thermogravimetric analysis, differential scanning calorimetry and transmission electron microscopy. Results revealed that spherical silver nanoparticles having diameter of 10–20 nm were successfully fabricated in the poly(N ‐isopropylacrylamide‐co ‐acrylamide) microgels with hydrodynamic diameter of 250 ± 50 nm. The uniformly loaded silver nanoparticles were found to be stable for long time due to donor–acceptor interaction between amide groups of polymer network and silver nanoparticles. Catalytic activity of the hybrid system was tested by choosing the catalytic reduction of 4‐nitrophenol as a model reaction under various conditions of catalyst dose and concentration of NaBH4 at room temperature in aqueous medium to explore the catalytic process. The progress of the reaction was monitored using UV–visible spectrophotometry. The pseudo first‐order kinetic model was employed to evaluate the apparent rate constant of the reaction. It was found that the apparent rate constant increased with increasing catalyst dose due to an increase of surface area as a result of an increase in the number of nanoparticles.  相似文献   

9.
A new heterogeneous copper catalyst was synthesized by immobilization of copper ions onto magnetic nanoparticles with a new ligand based on triazole. The catalyst was characterized using scanning and transmission electron microscopies, atomic absorption and Fourier transform infrared spectroscopies, and thermogravimetric, elemental and energy‐dispersive X‐ray analyses. The results confirmed that a good level of organic groups was immobilized on the magnetic nanoparticles. Huisgen cycloaddition reaction was chosen as a model reaction for the investigation of catalyst activity under green conditions. Phenylacetylene and benzyl bromide derivatives were used for the synthesis of triazoles. The reaction proceeded with good to excellent yields for various alkynes and alkyl halides. To investigate catalyst activity for inactive alkynes, aliphatic alkynes were used in the model reaction. The corresponding triazoles were obtained in good to excellent yields and a high regioselectivity for products was obtained. The catalyst was easily separated using an external magnetic field and subsequently reused in ten reaction cycles without any loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Magnetically recoverable copper nanoparticle‐loaded natural zeolite (CuNPs/MZN) as an efficient catalyst was synthesized. The Fe3O4 magnetic nanoparticles were immobilized into the pores of natural clinoptilolite zeolite, which were modified with epichlorohydrine and ethylenediamine species and then CuNPs were decorated on the surface of functionalized zeolite (CuNPs/MZN). The catalysts were successfully characterized by Fourier transform‐infrared, CHN, thermogravimetric analysis, inductively coupled plasma, X‐ray diffraction, scanning electron microscopy and transmission electron microscopy techniques. The 1,2,3‐triazoles were readily synthesized through using the catalyst in high yields and short reaction times under ultrasonic conditions via CuAAC reactions of aryl azides and terminal alkynes. The CuNPs/MZN was easily separated from the reaction mixture by an external magnet and reused several times successfully. The catalyst could be used for the synthesis of various organic compounds.  相似文献   

11.
A green and economical catalyst system, 4‐OH‐TEMPO/TCQ/TBN/HCl, for the aerobic oxidation of a broad range of primary and secondary alcohols to the corresponding carbonyl compounds has been developed. These reactions proceed without transition‐metals under mild conditions with excellent yields.  相似文献   

12.
A novel hybrid magnetic nanocatalyst was synthesized by covalent coating of Fe3O4 magnetic nanoparticles with choline chloride–urea deep eutectic solvent using 3‐iodopropyltrimethoxysilane as a linker. The structure of this new catalyst was fully characterized via elemental analysis, transmission and scanning electron microscopies, X‐ray diffraction and Fourier transform infrared spectroscopy. It was employed in the synthesis of various 2‐amino‐4H ‐pyran derivatives in water solution via an easy and green procedure. The desired products were obtained in high yields via a three‐component reaction between aromatic aldehyde, enolizable carbonyl and malononitrile at room temperature. The employed nanocatalyst was easily recovered using a magnetic field and reused four times (in subsequent runs) with less than 8% decrease in its catalytic activity.  相似文献   

13.
A magnetically recoverable nanocatalyst was synthesized by covalent binding of a Schiff base ligand, namely N,N′-bis(Salicylidene)-1,3-diaminopropane-2-ol (H2salpn), onto the surface of silica-coated magnetic CuFe2O4 nanoparticles, followed by complexation with MnCl2. The resulting core–shell nanoparticles were characterized by spectroscopic and microscopic methods, including FTIR, XRD, VSM, TGA elemental analysis, TEM, and SEM. The Mn content was determined by ICP analysis. The nanoparticles were investigated as a catalyst for the selective oxidation of alcohols to the corresponding carbonyl compounds with tertiary-butyl hydrogen peroxide. The catalyst can be magnetically separated for reuse, with no noticeable loss of activity in subsequent reaction cycles. FTIR, VSM, and leaching experiments after three successive cycles confirmed that the catalyst was strongly anchored to the magnetic nanoparticles. A suitable mechanism for the reaction is proposed.  相似文献   

14.
Palladium nanoparticles immobilized on amino-functionalized mesocellular foam constitute an efficient catalyst for the aerobic oxidation of primary and secondary alcohols to their corresponding carbonyl compounds in high to excellent yields. An exceptionally high TON of 365?000 was reached for the oxidation of 1-phenylethanol under solvent-free reaction conditions. The catalyst can be recycled many times with retained activity as shown by the identical rate curves of the first and fifth runs.  相似文献   

15.
The nitro and nitrile groups in aromatic and aliphatic compounds containing various reducible substituents such as carboxylic acid, ketone, aldehyde and halogen are selectively reduced to the corresponding amines in water as a green solvent with excellent yields by employing NaBH4 in the presence of Fe3O4@PAMAM/Ni(0)‐b‐PEG nanocatalyst. The morphology and structural features of the catalyst were characterized using various microscopic and spectroscopic techniques. The designed catalyst system because of it being covered with hydrophilic polymers is soluble in a wide range of solvents (e.g. water and ethanol) and suitable for immobilizing and stabilizing Ni nanoparticles in aqueous mediums. In addition, the catalyst can be easily recovered from a reaction mixture by applying an external magnetic field and can be reused up to six runs without significant loss of activity.  相似文献   

16.
Fe3O4 magnetic nanoparticles functionalized with 5,10‐dihydropyrido[2,3‐b]quinoxaline‐7,8‐diol were synthesized as was their complex with copper as a novel nanomagnetic iron oxide catalyst via a simple and green method, and characterized using various techniques. The capability of the catalyst was evaluated in the one‐pot three‐component synthesis of different tetrazoles, which showed very good results. Mild reaction conditions, good reusability and simple magnetic work‐up make this methodology interesting for the efficient synthesis of tetrazoles.  相似文献   

17.
Green tea extract having many phenolic hydroxyl and carbonyl functional groups in its molecular framework can be used in the modification of Fe3O4 nanoparticles. Moreover, the feasibility of complexation of polyphenols with silver ions in aqueous solution can improve the surface properties and capacity of the Fe3O4@green tea extract nanoparticles (Fe3O4@GTE NPs) for sorption and reduction of silver ions. Therefore, the novel Fe3O4@GTE NPs nano‐sorbent has potential ability as both reducing and stabilizing agent for immobilization of silver nanoparticles to make a novel magnetic silver nanocatalyst (Fe3O4@GTE/Ag NPs). Inductively coupled plasma analysis, transmission and scanning electron microscopies, energy‐dispersive X‐ray and Fourier transform infrared spectroscopies, and vibrating sample magnetometry were used to characterize the catalyst. Fe3O4@GTE/Ag NPs shows high catalytic activity as a recyclable nanocatalyst for the reduction of 4‐nitrophenol at room temperature.  相似文献   

18.
Copper(I) oxide nanoparticles supported on magnetic casein (Cu2O/Casein@Fe3O4NPs) has been synthesized as a bio‐supported catalyst and was characterized using powder X‐ray diffraction, transmission electron microscopy, energy dispersive X‐ray and Fourier transform infrared spectroscopies, thermogravimetric analysis and inductively coupled plasma optical emission spectrometry. The catalytic activity of the synthesized catalyst was investigated in one‐pot three‐component reactions of alkyl halides, sodium azide and alkynes to prepare 1,4‐disubstituted 1,2,3‐triazoles with high yields in water. The reaction work‐up is simple and the catalyst can be magnetically separated from the reaction medium and reused in subsequent reactions.  相似文献   

19.
A new magnetic catalyst was prepared through the reaction of silanol groups, on the surface of silica‐coated Fe3O4 magnetic nanoparticles, with (3‐chloropropyl)triethoxysilane followed by hexamethylenetetramine and chlorosulfonic acid. The obtained magnetic catalyst was characterized using thermogravimetric analysis, vibrating sample magnetometry, scanning electron microscopy and energy‐dispersive X‐ray analysis. Its catalytic activity was investigated in the synthesis of pyranopyrazole compounds, and the results were excellent regarding high yield of the products and short reaction time.  相似文献   

20.
Gold nanoparticles supported on poly ionic‐liquid magnetic nanoparticles (MNP@PIL@Au) were synthesized by reduction of HAuCl4 with sodium borohydride. The synthesized catalyst was characterized using by AAS, TEM, FT‐IR, EDS, TGA and XRD techniques. The performance of the synthesized catalyst was investigated in the reduction of nitroarenes with NaBH4. The reaction was carried out for various nitroarenes in water and mild conditions with high yields. The catalyst selectivity for the reduction of nitro group in the presences of other functional groups such as halides and alkynes was fairly well. The recycling of the catalyst was done 8 times without any significant loss of its catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号