首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A comparative kinetic study of the reactions of two mixed valence manganese(III,IV) complexes of macrocyclic ligands, [L1MnIV(O)2MnIIIL1], 1 (L1 = 1,4,8,11‐tetraazacyclotetradecane) and [L2MnIV(O)2MnIIIL2], 2 (L2 = 1,4,7,10‐tetraazacyclododecane) with thiosulfate has been carried out by spectrophotometry in aqueous buffer at 30°C. Reaction between complex 1 and thiosulfate follows a first‐order rate saturation kinetics. The pH dependency and kinetic evidences suggest the participation of two complex species of MnIII(μ‐O)2MnIV under the experimental conditions. Detailed kinetic study shows that reduction of 2 proceeds through an autocatalytic path where the intermediate (MnIII)2 species has been assumed to catalyze the reaction. The difference in the reaction mechanisms is ascribed to the difference in stability of the intermediate complex species, the evidence for which comes from the electrochemical behavior of the complexes and time dependent EPR spectroscopic measurements during the reduction of 2 . © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 119–128, 2004  相似文献   

2.
A mixed‐valence Mn complex {[MnIIMnIII(HL)2(4,4′‐bpy)(H2O)2] · (ClO4)(DMF)3(4,4′‐bpy)0.5}n ( 1 ) [H2L = 3‐(2‐phenol)‐5‐(pyridin‐2‐yl)‐1,2,4‐triazole] was synthesized and characterized by X‐ray single‐crystal structure analysis and magnetic susceptibility. Single‐crystal X‐ray analysis revealed that complex 1 has a dinuclear core, in which adjacent central MnIII atoms are linked by 4,4′‐bipyridine to form an infinite one‐dimensional (1D) molecular configuration. According to the Mn surrounding bond lengths and bond valence sum (BVS) calculations, we demonstrated that the Mn atom coordinated to the pyridine N atoms is in the +2 oxidation state, while another Mn atom coordinated to the phenolic oxygen atoms is in the +3 oxidation state. Magnetic susceptibility data of the complex 1 indicate that the ferromagnetic interaction dominates in this complex.  相似文献   

3.
Reaction of O,O′‐diisopropylthiophosphoric acid isothiocyanate (iPrO)2P(S)NCS with 1,10‐diaza‐18‐crown‐6, 1,7‐diaza‐18‐crown‐6, or 1,7‐diaza‐15‐crown‐5 leads to the N‐thiophosphorylated bis‐thioureas N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,10‐diaza‐18‐crown‐6 ( H2LI ), N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,7‐diaza‐18‐crown‐6 ( H2LII ) and N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,7‐diaza‐15‐crown‐5 ( H2LIII ). Reaction of the potassium salts of H2LI–III with a mixture of CuI and 2,2′‐bipyridine ( bpy ) or 1,10‐phenanthroline ( phen ) in aqueous EtOH/CH2Cl2 leads to the dinuclear complexes [Cu2(bpy)2LI–III] and [Cu2(phen)2LI–III] . The structures of these compounds were investigated by 1H, 31P{1H} NMR spectroscopy, and elemental analysis. The crystal structures of H2LI and [Cu2(phen)2LI] were determined by single‐crystal X‐ray diffraction. Extraction capacities of the obtained compounds in comparison to the related compounds 1,10‐diaza‐18‐crown‐6, N,N′‐bis[C(=CMe2)CH2P(O)(OiPr)2]‐1,10‐diaza‐18‐crown‐6, N,N′‐bis[C(S)NHP(O)(OiPr)2]‐1,10‐diaza‐18‐crown‐6 towards the picrate salts LiPic, NaPic, KPic. and NH4Pic were also studied.  相似文献   

4.
We report on a novel manganese(III)–porphyrin complex with the formula [MnIII(TPP)(3,5‐Me2pyNO)2]ClO4?CH3CN ( 2 ; 3,5‐Me2pyNO=3,5‐dimethylpyridine N‐oxide, H2TPP=5,10,15,20‐tetraphenylporphyrin), in which the MnIII ion is six‐coordinate with two monodentate 3,5‐Me2pyNO molecules and a tetradentate TPP ligand to build a tetragonally elongated octahedral geometry. The environment in 2 is responsible for the large and negative axial zero‐field splitting (D=?3.8 cm?1), low rhombicity (E/|D|=0.04) of the high‐spin MnIII ion, and, ultimately, for the observation of slow magnetic‐relaxation effects (Ea=15.5 cm?1 at H=1000 G) in this rare example of a manganese‐based single‐ion magnet (SIM). Structural, magnetic, and electronic characterizations were carried out by means of single‐crystal diffraction studies, variable‐temperature direct‐ and alternating‐current measurements and high‐frequency and ‐field EPR spectroscopic analysis followed by quantum‐chemical calculations. Slow magnetic‐relaxation effects were also observed in the already known analogous compound [MnIII(TPP)Cl] ( 1 ; Ea=10.5 cm?1 at H=1000 G). The results obtained for 1 and 2 are compared and discussed herein.  相似文献   

5.
Metal Complexes of Biologically Important Ligands. CLXVI Metal Complexes with Ferrocenylmethylcysteinate and 1,1′‐Ferrocenylbis‐(methylcysteinate) as Ligands A series of complexes of transition metal ions ( Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ ) and of lanthanide ions ( La3+, Nd3+, Gd3+, Dy3+, Lu3+ ) with the anions of ferrocenylmethyl‐L‐cysteine [(C5H5)Fe(C5H4CH(R)SCH2CH(NH3+)CO2?] (L1) and with the dianions of 1,1′‐ferrocenylbis(methyl‐L‐cysteine) [Fe(C5H4CH(R)SCH2CH(NH3+) CO2?)2] (R = H, Me, Ph) (L2) as N,O,S‐donors were prepared. With the monocysteine ferrocene derivative L1 as ligands complexes [MIIL12] or [CrIIIL12]Cl type complexes are formed whereas the bis(cysteine) ligand L2 yields insoluble complexes of type [ML2]n, presumably as coordination polymers. The magnetic moments of [MnIIL2]n, [PrIIIL2]n(OH)n and [DyIIIL2]n(OH)n exhibit “normal” paramagnetism.  相似文献   

6.
We have investigated the single‐molecule magnets [MnIII2(5‐Brsalen)2(MeOH)2MIII(CN)6]NEt4 (M=Os ( 1 ) and Ru ( 2 ); 5‐Brsalen=N,N′‐ethylenebis(5‐bromosalicylidene)iminate) by frequency‐domain Fourier‐transform terahertz electron paramagnetic resonance (THz‐EPR), inelastic neutron scattering, and superconducting quantum interference device (SQUID) magnetometry. The combination of all three techniques allows for the unambiguous experimental determination of the three‐axis anisotropic magnetic exchange coupling between MnIII and RuIII or OsIII ions, respectively. Analysis by means of a spin‐Hamiltonian parameterization yields excellent agreement with all experimental data. Furthermore, analytical calculations show that the observed exchange anisotropy is due to the bent geometry encountered in both 1 and 2 , whereas a linear geometry would lead to an Ising‐type exchange coupling.  相似文献   

7.
The synthesis and characterization of a new unsymmetrical dinucleating N,O‐donor ligand, 2‐[N,N‐bis­(2‐pyridyl­methyl)­amino­methyl]‐6‐[N‐(3,5‐di‐tert‐butyl‐2‐oxidobenzyl)‐N‐(2‐pyridyl­amino)­aminomethyl]‐4‐methyl­phenol (H2Ldtb), as well as the X‐ray crystal structure of its corresponding mixed‐valence diacetate‐bridged manganese complex, di‐μ‐acetato‐μ‐{2‐[N,N‐bis­(2‐pyridylmethyl)amino­methyl]‐6‐[N‐(3,5‐di‐tert‐butyl‐2‐oxidobenzyl)‐N‐(2‐pyridyl­amino)­aminomethyl]‐4‐methylphenolato}dimanganese(II,III) tetra­phenyl­borate, [MnIIMnIII(C42H49N5O2)(C2H3O2)2](C24H20B), are reported. The complex may be regarded as an inter­esting structural model for the mixed‐valence MnII–MnIII state of manganese catalase.  相似文献   

8.
In the title one‐dimensional complex, {[MnIII(C9H10NO2)2]Cl}n, the Schiff base ligand 2‐[(2‐hydroxy­ethyl)­imino­methyl]­phenolate (Hsae) functions as both a bridging and a chelating ligand. The MnIII ion is six‐coordinated by two N and four O atoms from four different Hsae ligands, yielding a distorted MnO4N2 octahedral environment. Each [MnIII(Hsae)2]+ cationic unit has the Mn atom on an inversion centre and each [MnIII(Hsae)2]+ cation lies about another inversion centre. The chain‐like complex is further extended into a three‐dimensional network structure through Cl⋯H—O hydrogen bonds and C—H⋯π contacts involving the Hsae rings.  相似文献   

9.
The ability of the tetraaza‐dithiophenolate ligand H2L2 (H2L2 = N,N′‐Bis‐[2‐thio‐3‐aminomethyl‐5‐tert‐butyl‐benzyl]propane‐1,3‐diamine) to form dinuclear chromium(III) complexes has been examined. Reaction of CrIICl2 with H2L2 in methanol in the presence of base followed by air‐oxidation afforded cis,cis‐[(L2)CrIII2(μ‐OH)(Cl)2]+ ( 1a ) and trans,trans‐[(L2)CrIII2(μ‐OH)(Cl)2]+ ( 1b ). Both compounds contain a confacial bioctahedral N2ClCrIII(μ‐SR)2(μ‐OH)CrIIIClN2 core. The isomers differ in the mutual orientation of the coligands and the conformation of the supporting ligand. In 1a both Cl? ligands are cis to the bridging OH function. In 1b they are in trans‐positions. Reaction of the hydroxo‐bridged complexes with HCl yielded the chloro‐bridged cations cis,cis‐[(L2)CrIII2(μ‐Cl)(Cl)2]+ ( 2a ) and trans,trans‐[(L2)CrIII2(μ‐Cl)(Cl)2]Cl ( 2b ), respectively. These bridge substitutions proceed with retention of the structures of the parent complexes 1a and 1b .  相似文献   

10.
The title compound, aqua­chloro{2,2′‐[1,2‐ethanediyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4O,N,N′,O′}manganese(III),[MnCl(C16H14N2O2)(H2O)], is a neutral manganese(III) complex with a pseudo‐octahedral metal centre. The equatorial plane comprises the four donor atoms of the tetradentate Schiff base ligand [Mn—O 1.886 (4) and 1.893 (4) Å, and Mn—N 1.978 (5) and 1.982 (5) Å], with a water mol­ecule [Mn—O 2.383 (4) Å] and a Cl? ligand [Mn—Cl 2.4680 (16) Å] completing the coordination sphere. The distorted geometry is highlighted by the marked displacement of the MnIII ion out of the least‐squares plane of the four Schiff base donor atoms by 0.165 (2) Å. These monomeric MnIII centres are then linked into a polymeric array via hydrogen bonds between the coordinated water mol­ecule and the phenolic O‐atom donors of an adjacent MnIII centre [O—H?O 2.789 (5) and 2.881 (5) Å].  相似文献   

11.
Two examples of heterometallic–organic frameworks (HMOFs) composed of dicarboxyl‐functionalized FeIII‐salen complexes and d10 metals (Zn, Cd), [Zn2(Fe‐L)22‐O)(H2O)2] ? 4 DMF ? 4 H2O ( 1 ) and [Cd2(Fe‐L)22‐O)(H2O)2] ? 2 DMF ? H2O ( 2 ) (H4L=1,2‐cyclohexanediamino‐N,N′‐bis(3‐methyl‐5‐carboxysalicylidene), have been synthesized and structurally characterized. In 1 and 2 , each square‐pyramidal FeIII atom is embedded in the [N2O2] pocket of an L4? anion, and these units are further bridged by a μ2‐O anion to give an (Fe‐L)22‐O) dimer. The two carboxylate groups of each L4? anion bridge ZnII or CdII atoms to afford a 3D porous HMOF. The gas sorption and magnetic properties of 1 and 2 have been studied. Remarkably, 1 and 2 show activity for the photocatalytic degradation of 2‐chlorophenol (2‐CP) under visible‐light irradiation, which, to the best of our knowledge, is the first time that this has been observed for FeIII‐salen‐based HMOFs.  相似文献   

12.
The reaction of the potassium salts of N‐phosphorylated thioureas [4′‐benzo‐15‐crown‐5]NHC(S)NHP(Y)(OiPr)2 (Y = S, HLI ; Y = O, HLII ) with ZnII and CoII cations in aqueous EtOH leads to complexes of formulae Zn(LI,IIS,Y)2 (Y = S, 1 ; Y = O, 2 ) and Co(LIS,S′)2 ( 3 ), while interaction of the potassium salt of N‐phosphorylated thioamide [4′‐benzo‐15‐crown‐5]C(S)NHP(O)(OiPr)2 ( HLIII ) with ZnII in the same conditions leads to the complex Zn(HLIII)(LIIIS,O)2 ( 4 ). The reaction of the potassium salt of crown ether‐containing N‐phosphorylated bis‐thiourea N,N′‐[C(S)NHP(O)(OiPr)2]2‐1,10‐diaza‐18‐crown‐6 ( H2L ) with CoII, ZnII and PdII cations in anhydrous CH3OH leads to complexes M2(L‐O,S)2 (M = Co, 5 ; Zn, 6 ; M = Pd, 7 ). Thioamide HLIII was investigated by single‐crystal X‐ray diffraction.  相似文献   

13.
The title coordination polymer, poly[bis(μ4‐biphenyl‐2,2′‐dicarboxylato)(dipyrido[3,2‐a:2′,3′‐c]phenazine)manganese(II)], [Mn2(C14H8O4)2(C18H10N4)]n, was obtained through the reaction of MnCl2·4H2O, biphenyl‐2,2′‐dicarboxylic acid (H2dpdc) and dipyrido[3,2‐a:2′,3′‐c]phenazine (L) under hydrothermal conditions. The asymmetric unit contains two crystallographically unique MnII ions, one unique L ligand and two unique dpdc ligands. One Mn ion is six‐coordinated by four O atoms from three different dpdc ligands and two N atoms from one L ligand, adopting a distorted octahedral coordination geometry. The distortions from ideal octahedral geometry are largely due to the presence of chelating ligands and the resulting acute N—Mn—N and O—Mn—O angles. The second Mn ion is coordinated in a distorted trigonal bipyramidal fashion by five O atoms from four distinct dpdc ligands. Four MnII ions are bridged by the carboxylate groups of the dpdc ligands to form an unusual tetranuclear MnII cluster. Clusters are further connected by the aromatic backbone of the dicarboxylate ligands, forming a one‐dimensional chain structure along the b axis. The title compound is the first example of a chain structure based on a tetranuclear MnII cluster.  相似文献   

14.
The crystal structure of the low‐spin (S = 1) MnIII complex [Mn(CN)2(C10H24N4)]ClO4, or trans‐[Mn(CN)2(cyclam)](ClO4) (cyclam is the tetradentate amine ligand 1,4,8,11‐tetra­aza­cyclo­tetra­decane), is reported. The structural parameters in the Mn(cyclam) moiety are found to be insensitive to both the spin and the oxidation state of the Mn ion. The difference between high‐ and low‐spin MnIII complexes is that a pronounced tetragonal elongation of the coordination octahedron occurs in high‐spin complexes and a slight tetragonal compression is seen in low‐spin complexes, as in the title complex.  相似文献   

15.
The reaction of MnII chloride with imino nitroxide radical, 2-(2-hydroxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-1-oxyl (HL2), affords the MnIII complex [MnL2 2L3]·Me2CO, a distinctive feature of which is the simultaneous presence in the ligand shell of both the initial imino nitroxide and the product of its reduction 2-(2-hydroxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide (HL3). The reaction involves the oxidation of MnII to MnIII and the reduction of the imino nitroxide radical to the corresponding amidine oxide along with a change in the coordination mode of the heterocyclic ligand on going from L2 to L3. The MnIII ion forms with L2 six-membered metallocycles typical of Schiff bases, whereas with L3 MnIII forms a seven-membered metallocycle due to the coordination of L3 by oxygen atoms of the phenol and N-oxide It was found in a similar reaction of NiII chloride with imino nitroxide HL2 that no oxidation of the metal occurred and bis(chelate) [NiL2 2(H2O)2]·2Me2CO was formed in the solid phase. The molecular and crystal structures of the compounds were determined, and their magnetic properties were studied.  相似文献   

16.
Under hydrothermal conditions, replacement of the water molecules in the [MnIII4MnII2O4(H2O)4]8+ cluster of mixed‐valent Mn6 sandwiched silicotungstate [(B‐α‐SiW9O34)2MnIII4MnII2O4(H2O)4]12? ( 1 a ) with organic N ligands led to the isolation of five organic–inorganic hybrid, Mn6‐substituted polyoxometalates (POMs) 2 – 6 . They were all structurally characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, diffuse‐reflectance spectroscopy, and powder and single‐crystal X‐ray diffraction. Compounds 2 – 6 represent the first series of mixed‐valent {MnIII4MnII2O4(H2O)4?n(L)n} sandwiched POMs covalently functionalized by organic ligands. The preparation of 1 – 6 not only indicates that the double‐cubane {MnIII4MnII2O4(H2O)4?n(L)n} clusters are very stable fragments in both conventional aqueous solution and hydrothermal systems and that organic functionalization of the [MnIII4MnII2O4(H2O)4]8+ cluster by substitution reactions is feasible, but also demonstrates that hydrothermal environments can promote and facilitate the occurrence of this substitution reaction. This work confirms that hydrothermal synthesis is effective for making novel mixed‐valent POMs substituted with transition‐metal (TM) clusters by combining lacunary Keggin precursors with TM cations and tunable organic ligands. Furthermore, magnetic measurements reveal that 3 and 6 exhibit single‐molecule magnet behavior.  相似文献   

17.
The three‐dimensional (3D) samarium phosphonate framework [Sm2(H2L)3]n · 5n(H2O) ( 1 ) [H4L = N,N′‐piperazine‐bis(methylenephosphonic acid)] was synthesized by hydrothermal reaction of Sm2O3 with N,N′‐piperazine‐bis(methylenephosphonic acid) hydrochloride in the presence of glutaric acid. Single‐crystal X‐ray diffraction analysis reveals that it has a 3D open framework structure with helical channels along the crystallographic c axis. The channels are filled up by discrete pentameric water clusters, which are hydrogen‐bonded to the host. Compound 1 displays two interesting structural features: (a) two of three H2L2– ligands adopt the less stable a,e‐cis conformation; (b) both of the SmIII ions exhibit rather unusual octahedral coordination arrangements. In addition, the photoluminescent property was investigated.  相似文献   

18.
A comparative kinetic study of the reactions of two mixed valence manganese(III,IV) complexes with macrocyclic ligands, [L1MnIV(O)2MnIIIL1], 1 (L1 = 1,4,7,10‐tetraazacyclododecane) and [L2MnIV(O)2MnIIIL2], 2 (L2 = 1,4,8,11‐tetraazacyclotetradecane) with 2‐mercaptoethanol (RSH) has been carried out by spectrophotometry in aqueous buffer at (30 ± 0.1)°C. Rate of the reactions between the oxidants and the reductant was found to be negligibly slow with no systematic dependence on either redox partners. Externally added copper(II) (usually 5 × 10?7 mol dm?3), however, increases the rate of the reduction of 1 and 2 significantly. In the presence of catalytic amount of copper(II), the rate of the reaction is nearly proportional to [RSH] at lower concentration of the reductant but follows a saturation kinetics at higher concentration of the latter for the reaction between 1 and the thiol. Reaction rate was found to be strongly influenced by the variation of acidity of the medium and the observed kinetics suggests that the two reductant species ([Cu(RSH)]2+ and [Cu(RS)]+) are significant for the reaction between 1 and the thiol. The dependence of the rate on [RSH] for the reduction of 2 by the thiol was complex and rationalized considering two equilibria involving the catalyst (Cu2+) and the reductant. The pH rate profile suggests that both the μ‐O protonated [MnIII(O)(OH)MnIV] and the deprotonated [MnIII(O)2MnIV] forms of the oxidant 2 become important. The kinetic results presented in this study indicate the domination of outer‐sphere path. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 129–137, 2004  相似文献   

19.
Reactions of copper(II) acetate with N1‐subsitituted salicylaldehyde thiosemicarbazones [R1R2C2=N3–N2H–C1(=S)–N1HR3;R1 = 2‐HO–C6H4–, R2 = H : R3 = Me (H2L1), Et (H2L2)] are described. Copper(II) acetate was reacted with H2L1 and H2L2 ligands in the presence of polypyridyl co‐ligands, and this led to the formation ofmononuclear complexes, [Cu(κ3‐O, N, S‐L1)(κ2‐N, N‐bipy)] ( 1 ),[Cu(κ3‐O, N, S‐L)(κ2‐N, N‐phen)] [L = L1 ( 3 ), L2 ( 4 )], [Cu(κ3‐O, N, S‐L)(κ2‐N, N‐tmphen)] [L =L1 ( 5 ), L2 ( 6 )] and a dinuclear complex, [Cu2L22(bipy)] ( 2 ) (bipy = 2, 2′‐bipyridine, phen = 1, 10‐phenanthroline, tmphen = 3, 4, 7, 8‐tetramethyl‐1, 10‐phenanthroline). In dinuclear complex 2 , one ligand is O, N3,S‐chelating, while second is O, N3,S‐chelation‐cum‐N2‐bridging; and in all others thio‐ligands are O, N3,S‐chelating. The μeff values for the complexes lie in the range of 1.79–1.83 BM. Complexes 1 , 3 – 6 have square pyramidal arrangement, whereas complex 2 has two independent molecules in the crystal lattice, and each molecule has trigonal bipyramidal square planar (5:4) coordination pair. Complexes 2 , 4 , and 6 showed fluorescence properties.  相似文献   

20.
The Schiff base N,N′‐bis(salicylidene)‐1,5‐diamino‐3‐oxapentane (H2L) and its lanthanide(III) complexes, PrL(NO3)(DMF)(H2O) ( 1 ) and Ho2L2(NO3)2 · 2H2O ( 2 ), were synthesized and characterized by physicochemical and spectroscopic methods. Single crystal X‐ray structure analysis revealed that complex 1 is a discrete mononuclear species. The PrIII ion is nine‐coordinate, forming a distorted capped square antiprismatic arrangement. Complex 2 is a centrosymmetric dinuclear neutral entity in which the HoIII ion is eight‐coordinate with distorted square antiprismatic arrangement. The DNA‐binding properties of H2L and its LnIII complexes were investigated by spectrophotometric methods and viscosity measurements. The results suggest that the ligand H2L and its LnIII complexes both connect to DNA in a groove binding mode; the complexes bind more strongly to DNA than the ligand. Moreover, the antioxidant activities of the LnIII complexes were in vitro determined by superoxide and hydroxyl radical scavenging methods, which indicate that complexes 1 and 2 have OH · and O2– · radical scavenging activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号