首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of certain digestive enzymes by target food matrices represents a new approach in the treatment of socially significant diseases. Proving the ability of fruits to inhibit such enzymes can support the inclusion of specific varieties in the daily diets of patients with diabetes, obesity, Alzheimer’s disease, etc., providing them with much more than just valuable micro- and macromolecules. The current study aimed atidentifying and comparing the GC-MS metabolic profiles of eight peach varieties (“Filina”, “Ufo 4, “Gergana”, “Laskava”, “July Lady”, “Flat Queen”, “Evmolpiya”, and “Morsiani 90”) grown in Bulgaria (local and introduced) and to evaluate the inhibitory potential of their extracts towards α-glucosidase, α-amylase, lipase, and acetylcholinesterase. In order to confirm samples’ differences or similarities, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were also applied to the identified metabolites. The results provide important insights into the metabolomic profiles of the eight peach varieties and represent a first attempt to characterize the peels of the peach varieties with respect to α-glucosidase-, α-amylase-, lipase-, and acetylcholinesterase-inhibitory activities. All of the studied peach extracts displayed inhibitory activity towards α-glucosidase (IC50: 125–757 mg/mL) and acetylcholinesterase (IC50: 60–739 mg/mL), but none of them affected α-amylase activity. Five of the eight varieties showed inhibitory activity towards porcine pancreatic lipase (IC50: 24–167 mg/mL). The obtained results validate the usefulness of peaches and nectarines as valuable sources of natural agents beneficial for human health, although further detailed investigation should be performed in order to thoroughly identify the enzyme inhibitors responsible for each activity.  相似文献   

2.
The direct, one-pot oxidation of ethane to acetic acid was, for the first time, performed using a C-scorpionate complex anchored onto a magnetic core-shell support, the Fe3O4/TiO2/[FeCl23-HC(pz)3}] composite. This catalytic system, where the magnetic catalyst is easily recovered and reused, is highly selective to the acetic acid synthesis. The performed green metrics calculations highlight the “greeness” of the new ethane oxidation procedure.  相似文献   

3.
Organic polymers can be made porous via continuous or discontinuous expansion processes in scCO2. The resulting foams properties are controlled by the interplay of three groups of parameters: (i) Chemical, (ii) physico-chemical, and (iii) technological/process that are explained in this paper. The advantages and drawbacks of continuous (extrusion, injection foaming) or discontinuous (batch foaming) foaming processes in scCO2, will be discussed in this article; especially for micro or nano cellular polymers. Indeed, a challenge is to reduce both specific mass (e.g., ρ < 100 kg·m−3) and cell size (e.g., average pore diameter ϕaveragepores < 100 nm). Then a particular system where small “objects” (coreshells CS, block copolymer MAM) are perfectly dispersed at a micrometric to nanometric scale in poly(methyl methacrylate) (PMMA) will be presented. Such “additives”, considered as foaming aids, are aimed at “regulating” the foaming and lowering the pore size and/or density of PMMA based foams. Differences between these additives will be shown. Finally, in a PMMA/20 wt% MAM blend, via a quasi one-step batch foaming, a “porous to nonporous” transition is observed in thick samples. A lower limit of pore size (around 50 nm) seems to arise.  相似文献   

4.
A molecular umbrella composed of two O-sulfated cholic acid residues was applied for the construction of conjugates with cispentacin, containing a “trimethyl lock” (TML) or o-dithiobenzylcarbamoyl moiety as a cleavable linker. Three out of five conjugates demonstrated antifungal in vitro activity against C. albicans and C. glabrata but not against C. krusei, with MIC90 values in the 0.22–0.99 mM range and were not hemolytic. Antifungal activity of the most active conjugate 24c, containing the TML–pimelate linker, was comparable to that of intact cispentacin. A structural analogue of 24c, containing the Nap-NH2 fluorescent probe, was accumulated in Candida cells, and TML-containing conjugates were cleaved in cell-free extract of C. albicans cells. These results suggest that a molecular umbrella can be successfully applied as a nanocarrier for the construction of cleavable antifungal conjugates.  相似文献   

5.
Antimicrobial resistance represents a significant world-wide health threat that is looming. To meet this challenge, new classes of antimicrobial agents and the redesign of existing ones will be required. This review summarizes some of the studies that have been carried out in my own laboratories involving membrane-disrupting agents. A major discovery that we made, using a Triton X-100 as a prototypical membrane-disrupting molecule and cholesterol-rich liposomes as model systems, was that membrane disruption can occur by two distinct processes, depending on the state of aggregation of the attacking agent. Specifically, we found that monomers induced leakage, while attack by aggregates resulted in a catastrophic rupture of the membrane. This discovery led us to design of a series of derivatives of the clinically important antifungal agent, Amphotericin B, where we demonstrated the feasibility of separating antifungal from hemolytic activity by decreasing the molecule’s tendency to aggregate, i.e., by controlling its monomer concentration. Using an entirely different approach (i.e., a “taming” strategy), we found that by covalently attaching one or more facial amphiphiles (“floats”) to Amphotericin B, its aggregate forms were much less active in lysing red blood cells while maintaining high antifungal activity. The possibility of applying such “monomer control” and “taming” strategies to other membrane-disrupting antimicrobial agents is briefly discussed.  相似文献   

6.
In this work, we designed and successfully synthesized an interconnected carbon nanosheet/MoS2/polyaniline hybrid (ICN/MoS2/PANI) by combining the hydrothermal method and in situ chemical oxidative polymerization. The as-synthesized ICNs/MoS2/PANI hybrid showed a “caramel treat-like” architecture in which the sisal fiber derived ICNs were used as hosts to grow “follower-like” MoS2 nanostructures, and the PANI film was controllably grown on the surface of ICNs and MoS2. As a LIBs anode material, the ICN/MoS2/PANI electrode possesses excellent cycling performance, superior rate capability, and high reversible capacity. The reversible capacity retains 583 mA h/g after 400 cycles at a high current density of 2 A/g. The standout electrochemical performance of the ICN/MoS2/PANI electrode can be attributed to the synergistic effects of ICNs, MoS2 nanostructures, and PANI. The ICN framework can buffer the volume change of MoS2, facilitate electron transfer, and supply more lithium inset sites. The MoS2 nanostructures provide superior rate capability and reversible capacity, and the PANI coating can further buffer the volume change and facilitate electron transfer.  相似文献   

7.
This review focuses on the natural sources and pharmacological activity of tormentic acid (TA; 2α,3β,19α-trihydroxyurs-2-en-28-oic acid). The current knowledge of its occurrence in various plant species and families is summarized. Biological activity (e.g., anti-inflammatory, antidiabetic, antihyperlipidemic, hepatoprotective, cardioprotective, neuroprotective, anti-cancer, anti-osteoarthritic, antinociceptive, antioxidative, anti-melanogenic, cytotoxic, antimicrobial, and antiparasitic) confirmed in in vitro and in vivo studies is compiled and described. Biochemical mechanisms affected by TA are indicated. Moreover, issues related to the biotechnological methods of production, effective eluents, and TA derivatives are presented.  相似文献   

8.
9.
The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as “unconventional” therapeutics with precise spatiotemporal control by using light stimuli may open entirely new horizons for innovative therapeutic modalities. Among ROS and RNS, peroxynitrite (ONOO) plays a dominant role in chemistry and biology in view of its potent oxidizing power and cytotoxic action. We have designed and synthesized a molecular hybrid based on benzophenothiazine as a red light-harvesting antenna joined to an N-nitroso appendage through a flexible spacer. Single photon red light excitation of this molecular construct triggers the release of nitric oxide (˙NO) and simultaneously produces superoxide anions (O2˙). The diffusion-controlled reaction between these two radical species generates ONOO, as confirmed by the use of fluorescein-boronate as a highly selective chemical probe. Besides, the red fluorescence of the hybrid allows its tracking in different types of cancer cells where it is well-tolerated in the dark but induces remarkable cell mortality under irradiation with red light in a very low concentration range, with very low light doses (ca. 1 J cm−2). This ONOO generator activatable by highly biocompatible and tissue penetrating single photon red light can open up intriguing prospects in biomedical research, where precise and spatiotemporally controlled concentrations of ONOO are required.

Excitation of a molecular hybrid with highly biocompatible red light generates cytotoxic peroxynitrite, produces red fluorescence useful for cell tracking and induces remarkable cancer cell death at very low concentrations and very low light doses.  相似文献   

10.
The “coordination-insertion” ring-opening polymerization (ROP) mechanism has so far been the monopoly of metal catalysts. In this work, we present a metal-free “coordination-insertion” ROP of trimethylene carbonate (TMC) and ε-caprolactone (ε-CL), as well as their sequential block copolymerization, with N-trimethylsilyl-bis (trifluoromethanesulfonyl)imide (TMSNTf2) as the non-metallic initiator/catalyst. TMSNTf2 was proposed to work through an unprecedented metal-free “coordination-insertion” mechanism, which involves the coordination of monomer to the Si atom of TMSNTf2, the nucleophilic attack of the –NTf2 group on the coordinated monomer, and the cleavage of the acyl–oxygen bond of the monomer. The proposed metal-free “coordination-insertion” ROP was studied by NMR, SEC, and MALDI-TOF analyses. In addition, the TMSNTf2-mediated ROP of TMC and ε-CL led to linear and cyclic polymers following two-stage first-order polymerization processes, as evidenced by structural analyses and kinetics study, which further demonstrated the metal-free “coordination-insertion” mechanism.

The first metal-free “coordination-insertion” ROP of cyclic carbonate and lactones mediated by N-trimethylsilyl-bis(trifluoromethanesulfonyl)imide (TMSNTf2) was proposed, which in the past was exclusively the monopoly of metal complex catalysts.  相似文献   

11.
Novel dyes were prepared by simple “click CuAAC” attachment of a triarylborane–alkyne to the azide side chain of an amino acid yielding triarylborane dye 1 which was conjugated with pyrene (dye 2) forming a triarylborane–pyrene FRET pair. In contrast to previous cationic triarylboranes, the novel neutral dyes interact only with proteins, while their affinity to DNA/RNA is completely abolished. Both the reference triarylborane amino acid and triarylborane–pyrene conjugate bind to BSA and the hDPP III enzyme with high affinities, exhibiting a strong (up to 100-fold) fluorescence increase, whereby the triarylborane–pyrene conjugate additionally retained FRET upon binding to the protein. Furthermore, the triarylborane dyes, upon binding to the hDPP III enzyme, did not impair its enzymatic activity under a wide range of experimental conditions, thus being the first non-covalent fluorimetric markers for hDPP III, also applicable during enzymatic reactions with hDPP III substrates.  相似文献   

12.
“Drug repositioning” is a current trend which proved useful in the search for new applications for existing, failed, no longer in use or abandoned drugs, particularly when addressing issues such as bacterial or cancer cells resistance to current therapeutic approaches. In this context, six new complexes of the first-generation quinolone oxolinic acid with rare-earth metal cations (Y3+, La3+, Sm3+, Eu3+, Gd3+, Tb3+) have been synthesized and characterized. The experimental data suggest that the quinolone acts as a bidentate ligand, binding to the metal ion via the keto and carboxylate oxygen atoms; these findings are supported by DFT (density functional theory) calculations for the Sm3+ complex. The cytotoxic activity of the complexes, as well as the ligand, has been studied on MDA-MB 231 (human breast adenocarcinoma), LoVo (human colon adenocarcinoma) and HUVEC (normal human umbilical vein endothelial cells) cell lines. UV-Vis spectroscopy and competitive binding studies show that the complexes display binding affinities (Kb) towards double stranded DNA in the range of 9.33 × 104 − 10.72 × 105. Major and minor groove-binding most likely play a significant role in the interactions of the complexes with DNA. Moreover, the complexes bind human serum albumin more avidly than apo-transferrin.  相似文献   

13.
An efficient palladium-catalyzed AAA reaction with a simple α-sulfonyl carbon anion as nucleophiles is presented for the first time. Allyl fluorides are used as superior precursors for the generation of π-allyl complexes that upon ionization liberate fluoride anions for activation of silylated nucleophiles. With the unique bidentate diamidophosphite ligand ligated palladium as catalyst, the in situ generated α-sulfonyl carbon anion was quickly captured by the allylic intermediates, affording a series of chiral homo-allylic sulfones with high efficiency and selectivity. This work provides a mild in situ desilylation strategy to reveal nucleophilic carbon centers that could be used to overcome the pKa limitation of “hard” nucleophiles in enantioselective transformations.

A variety of “hard” α-sulfonyl carbanions of aryl, heteroaryl and alkyl sulfones were successfully employed as nucleophiles in palladium-catalyzed asymmetric allylic alkylation with excellent enantioselectivities.  相似文献   

14.
The synthesis and matrix metalloproteinase (MMP) inhibitory activity of a cyclam–marimastat conjugate and its metal complexes are described. The conjugate, synthesized with a copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition (“click” reaction), contains two zinc-binding groups (ZBGs). The metal complexation behavior with copper(II) and zinc(II) was investigated using UV/Vis spectrophotometry and 1H NMR spectroscopy, respectively, demonstrating that the first equivalent of the metal ion was chelated by the cyclam-triazole moiety rather than the hydroxamic acid site. Thus, the corresponding mononuclear metal–cyclam complexes were successfully prepared with one equivalent of the metal salt. Both the cyclam–marimastat conjugate and its metal complexes exhibited slightly reduced potency against MMP-1, but essentially identical inhibitory activity against MMP-3. The conjugate and its metal complexes displayed little or no cytotoxicity, further supporting their potential suitability for imaging MMP localization and activity. To the best of our knowledge, this is the first report that describes the incorporation of metal complexes into an MMP inhibitor without influencing the preexisting ZBG, and the first report of the evaluation of structures containing more than one ZBG as MMP inhibitors.  相似文献   

15.
A new bipyridyl derivative 1 bearing rhodamine B as visible fluorophore was designed, synthesized and characterized as a fluorescent and colorimetric sensor for metal ions. Interaction with Cu2+, Zn2+, Cd2+, Hg+, and Hg2+ ions was followed by UV/Vis and emission spectroscopy. Upon addition of these metal ions, different colorimetric and fluorescent responses were observed. “Off-on-off” (Cu2+, Zn2+, and Hg2+) and “off-on” (Hg+ and Cd2+) systems were obtained. Probe 1 was explored to mimic XOR and OR logic operations for the simultaneous detection of Hg+–Cu2+ and Hg+–Zn2+ pairs, respectively. DFT calculations were also performed to gain insight into the lowest-energy gas-phase conformation of free receptor 1 as well as the atomistic details of the coordination modes of the various metal ions.  相似文献   

16.
Lanthanide-based luminescence resonance energy transfer (LRET) can be used as a tool to enhance lanthanide emission for time-resolved cellular imaging applications. By shortening lanthanide emission lifetimes whilst providing an alternative radiative pathway to the formally forbidden, weak lanthanide-only emission, the photon flux of such systems is increased. With this aim in mind, we investigated energy transfer in differently spaced donor–acceptor terbium–rhodamine pairs with the LRET “on” (low pH) and LRET “off” (high pH). Results informed the design, preparation and characterisation of a compound containing terbium, a spectrally-matched pH-responsive fluorophore and a receptor-targeting group. By combining these elements, we observed switchable LRET, where the targeting group sensitises lanthanide emission, resulting in an energy transfer to the rhodamine dye with an efficiency of E = 0.53. This strategy can be used to increase lanthanide emission rates for brighter optical probes.

A pH-sensitive luminescence resonance energy transfer (LRET) was explored as a method to increase photon flux in a terbium-rhodamine-receptor targeting group construct. At low pH, long-lived dye emission and shorter terbium lifetimes were observed.  相似文献   

17.
Opuntia ficus-indica (L.) Mill. is the Cactaceae plant with the greatest economic relevance in the world. It can be used for medicinal purposes, animal nutrition, production of biofuels and phytoremediation of soils. Due to its high content of bioactive compounds, the prickly pear has antioxidant, antimicrobial and anticancer properties. The aim of this study was to determine the polyphenolic, fatty acid and amino acid profile and characterize the antioxidant capacity of seeds of seven Spanish prickly pear cultivars. A total of 21 metabolites, mainly phenolic acids and flavonols, were identified using ultraperformance liquid chromatography photodiode detector quadrupole/time-of-flight mass spectrometry (UPLC-PDA-Q/TOF-MS). Significant differences were found in the phenolic concentrations of the investigated varieties. The highest amount of phenolic compounds (266.67 mg/kg dry matter) were found in the “Nopal espinoso” variety, while the “Fresa” variety was characterized by the lowest content (34.07 mg/kg DM) of these compounds. In vitro antioxidant capacity was positively correlated with the amount of polyphenols. The amino acid composition of protein contained in prickly pear seeds was influenced by the variety. Glutamic acid was the predominant amino acid followed by arginine, aspartic acid and leucine, independent of prickly pear variety. Overall, 13 different fatty acids were identified and assessed in prickly pear seeds. The dominant fatty acid was linoleic acid, with content varying between 57.72% “Nopal ovalado” and 63.11% “Nopal espinoso”.  相似文献   

18.
In this study, we determined the phytochemical profile of the Spanish “triguero” asparagus landrace “verde-morado” (Asparagus officinalis L.), a wild traditional landrace, and the improved “triguero” HT-801, together with two commercial green asparagus varieties. For comparison, we used reverse-phase high-performance liquid chromatography coupled with diode array electrospray time-of-flight mass spectrometry (RP-HPLC-DAD-ESI-TOF/MS) followed by a permutation test applied using a resampling methodology valid under a relaxed set of assumptions, such as i.i.d. errors (not necessarily normal) that are exchangeable under the null hypothesis. As a result, we postulate that “triguero” varieties (the improved HT-801 followed by its parent “verde-morado”) have a significantly different phytochemical profile from that of the other two commercial hybrid green varieties. In particular, we found compounds specific to the “triguero” varieties, such as feruloylhexosylhexose isomers, or isorhamnetin-3-O-glucoside, which was found only in the “triguero” variety HT-801. Although studies relating the phytochemical content of “triguero” asparagus varieties to its health-promoting effects are required, this characteristic phytochemical profile can be used for differentiating and revalorizating these asparagus cultivars.  相似文献   

19.
Photosensitizing agents are essential for precise and efficient photodynamic therapy (PDT). However, most of the conventional photosensitizers still suffer from limitations such as aggregation-caused quenching (ACQ) in physiological environments and toxic side-effects on normal tissues during treatment, leading to reduced therapeutic efficacy. Thus, integrating excellent photophysical properties and accurate carcinoma selectivity in a photosensitizer system remains highly desired. Herein, a “dual lock-and-key” supramolecular photosensitizer BIBCl–PAE NPs for specific and enhanced cancer therapy is reported. BIBCl–PAE NPs are constructed by encapsulating a rationally designed glutathione (GSH)-activatable photosensitizer BIBCl in a pH-responsive diblock copolymer. In normal tissues, BIBCl is “locked” in the hydrophobic core of the polymeric micelles due to ACQ. Under the “dual key” activation of low pH and high levels of GSH in a tumor microenvironment, the disassembly of micelles facilitates the reaction of BIBCl with GSH to release water-soluble BIBSG with ideal biocompatibility, enabling the highly efficient PDT. Moreover, benefiting from the Förster resonance energy transfer effect of BIBSG, improved light harvesting ability and 1O2 production are achieved. In vitro and vivo experiments have demonstrated that BIBCl–PAE NPs are effective in targeting and inhibiting carcinoma. BIBCl–PAE NPs show superior anticancer efficiency relative to non-activatable controls.

The “dual lock-and-key” supramolecular photosensitizers enable specific and enhanced photodynamic therapy (PDT).  相似文献   

20.
Glucuronidation is a Phase 2 metabolic pathway responsible for the metabolism and excretion of testosterone to a conjugate testosterone glucuronide. Bioavailability and the rate of anabolic steroid testosterone metabolism can be affected upon UGT glucuronidation enzyme alteration. However, there is a lack of information about the in vitro potential assessment of UGT2B17 inhibition by salicylic acid. The purpose of this study is to investigate if UGT2B17 enzyme activity is inhibited by salicylic acid. A UGT2B17 assay was developed and validated by HPLC using a C18 reversed phase column (SUPELCO 25 cm × 4.6 mm, 5 μm) at 246 nm using a gradient elution mobile phase system: (A) phosphate buffer (0.01 M) at pH = 3.8, (B) HPLC grade acetonitrile and (C) HPLC grade methanol. The UGT2B17 metabolite (testosterone glucuronide) was quantified using human UGT2B17 supersomes by a validated HPLC method. The type of inhibition was determined by Lineweaver–Burk plots. These were constructed from the in vitro inhibition of salicylic acid at different concentration levels. The UGT2B17 assay showed good linearity (R2 > 0.99), acceptable recovery and accuracy (80–120%), good reproducibility and acceptable inter and intra-assay precision (<15%), low detection (6.42 and 2.76 μM) and quantitation limit values (19.46 and 8.38 μM) for testosterone and testosterone glucuronide respectively, according to ICH guidelines. Testosterone and testosterone glucuronide were found to be stable up to 72 h in normal laboratory conditions. Our investigational study showed that salicylic acid uncompetitively inhibited UGT2B17 enzyme activity. Thus, drugs that are substrates for the UGT2B17 enzyme have negligible potential effect of causing interaction with salicylic acid in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号