首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A novel strategy was developed to extend the application of electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) to the analysis of long-chain polysaccharides. High molecular weight polydisperse maltodextrins (poly-alpha(1-4) glucose) and dextrans (poly-alpha(1-6) glucose) were chosen as model compounds in the present study. Increased ionization efficiency of these mixtures in the positive ion mode was achieved upon modification of their reducing end with nitrogen-containing groups. The derivatization method is based on the formation of a new C--N bond between 1,6-hexamethylenediamine (HMD) and the reducing end of the polysaccharide, which exists in solution as an equilibrium between the hemiacetal and the open-ring aldehyde form. To achieve the chemical modification of the reducing end, two synthetic pathways were developed: (i) coupling of HMD by reductive amination and (ii) oxidation of the hemiacetal to lactone, followed by ring opening by HMD to yield the maltodextrin lactonamide of 1,6-hexanediamine (HMMD). Amino-functionalized polysaccharides were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR-MS) in the positive ion mode by direct flow injection. The hexamethylenediamine (HMD) and maltodextrin lactonamide of 1,6-hexanediamine (HMMD) moieties provide increased proton affinities which dramatically improve the detection of the long-chain polysaccharides by FTICR-MS. The present approach allowed for identification of single components in mixtures with prominent heterogeneity in the degree of polymerization (DP), without the need for chromatographic separation prior to MS. The high mass accuracy was essential for the unambiguous characterization of the species observed in the analyzed mixtures. Furthermore, molecular components containing up to 42 glucose residues were detected, representing the largest polysaccharide chains analyzed so far by ESI FTICR-MS.  相似文献   

2.
A compound library consisting of 144 pyrazole carboxylic acids and six sublibraries consisting of 24 components was analysed using electrospray ionisation Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The library was synthesised by the split-mix method and investigated by direct infusion analysis by which 134 compounds were detected. FTICR-MS is predestined for the direct characterisation of complex compound libraries because of its outstanding mass resolution and mass accuracy. However, discrimination within the electrospray ionisation process sometimes leads to signal suppression and thus to misinterpretation of the synthetic results. Using micro-HPLC/MS we were able to assign all 144 compounds including all pairs of isobaric pyrazoles. We also show that, due to partial separation, FTICR-MS is indispensable for proper detection of co-eluting compounds.  相似文献   

3.
High-field asymmetric waveform ion mobility spectrometry (FAIMS) is shown to be capable of resolving isomeric and isobaric glycosaminoglycan negative ions and to have great utility for the analysis of this class of molecules when combined with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tandem mass spectrometry. Electron detachment dissociation (EDD) and other ion activation methods for tandem mass spectrometry can be used to determine the sites of labile sulfate modifications and for assigning the stereochemistry of hexuronic acid residues of glycosaminoglycans (GAGs). However, mixtures with overlapping mass-to-charge values present a challenge, as their precursor species cannot be resolved by a mass analyzer prior to ion activation. FAIMS is shown to resolve two types of mass-to-charge overlaps. A mixture of chondroitin sulfate A (CSA) oligomers with 4–10 saccharides units produces ions of a single mass-to-charge by electrospray ionization, as the charge state increases in direct proportion to the degree of polymerization for these sulfated carbohydrates. FAIMS is shown to resolve the overlapping charge. A more challenging type of mass-to-charge overlap occurs for mixtures of diastereomers. FAIMS is shown to separate two sets of epimeric GAG tetramers. For the epimer pairs, the complexity of the separation is reduced when the reducing end is alkylated, suggesting that anomers are also resolved by FAIMS. The resolved components were activated by EDD and the fragment ions were analyzed by FTICR-MS. The resulting tandem mass spectra were able to distinguish the two epimers from each other.
Figure
?  相似文献   

4.
Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) was applied to identify boric acid(B degrees)/borate(B-) complexes in a monomolecular model system, composed of aqueous caffeic acid and boric acid/borate solutions in various concentration ratios at pH 9.2. Using negative mode electrospray ionization as a 'soft' ionization technique, clusters of polyborate were detected beside the well-known BL degrees , BL- and BL2- complexes. An algorithm for the detection of boron complexes, based on their accurate mass and isotope patterns, is proposed which enabled the assignment of elemental compositions/structural formulae of boron/ligand complexes. We present experimental evidence of self-oligomerization of up to six borate units with caffeic acid, resulting in stable covalently bound polyborate-polyol complexes.  相似文献   

5.
Electrospray ionization (ESI) combined with ultra-high-resolution mass spectrometry on a Fourier transform ion cyclotron resonance mass spectrometer has been shown to be a very powerful tool for the analysis of fulvic and humic acids and of natural organic matter (NOM) at the molecular level. With this technique thousands of ions can be separated from each other and their m/z ratio determined with sufficient accuracy to allow molecular formula calculation. Organic biogeochemistry, water chemistry, and atmospheric chemistry greatly benefit from this technique. Methodical aspects concerning the application of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to NOM isolated from surface water, groundwater, marine waters, and soils as well as from secondary organic aerosol in the atmospheric are reviewed. Enrichment of NOM and its chromatographic separation as well as possible influences of the ionization process on the appearance of the mass spectra are discussed. These steps of the analytical process require more systematic investigations. A basic drawback, however, is the lack of well defined single reference compounds of NOM or fulvic acids. Approaches of molecular formula calculation from the mass spectrometric data are reviewed and available graphical presentation methods are summarized. Finally, unsolved issues that limit the quality of data generated by FTICR-MS analysis of NOM are elaborated. It is concluded that further development in NOM enrichment and chromatographic separation is required and that tools for data analysis, data comparison and data visualization ought to be improved to make full use of FTICR-MS in NOM analysis.  相似文献   

6.
A new internal matrix-assisted laser desorption-ionization (MALDI) Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) method is introduced. The target is directly positioned at one trapping electrode of a single cylindrical ion cyclotron resonance (ICR) cell and becomes a part of it. The ionization occurs inside the ICR cell in contrast to external or near-cell MALDI-FTICR-MS techniques. Very efficient trapping and mass resolving power better than unit resolution of singly charged peptides and proteins ions up to 2000 u is possible by using only basic FTICR-MS techniques. The sole application of a pulsed retarding potential increases the mass range to 6000 u. No collisional cooling and quadrupolar excitation was done. Sensitivities below 1 fmol, and ion storage times of more than 15 s are shown. High resolving powers of 16,000 and 56,000 are obtained on bovine insulin (5.7 ku) and gramicidin D (1.9 ku), respectively.  相似文献   

7.
The NanoMate robot has been coupled to a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer at 9.4 T and implemented for the first time for complex carbohydrate analysis. It was optimized in the negative ion mode to achieve automated sample delivery on the chip along with increased sensitivity, ultra-high resolution and accurate mass determination. A novel bracket has been designed to allow a reliable mounting of the NanoMate to the Apollo electrospray ionization (ESI) source of an APEX II instrument. The notably higher efficiency of ionization for compositional mapping of complex mixtures and feasibility for fragmentation analysis of components by sustained off-resonance irradiation collision-induced tandem mass spectrometry (SORI-CID MS2) has been demonstrated on a glycoconjugate mixture containing O-glycosylated sialylated peptides from urine of a patient suffering from a hereditary N-acetylhexosaminidase deficiency (Schindler's disease), previously analyzed by capillary-based nanoESI-FTICRMS, and of a healthy control person. Due to its potential to generate highly charged ionic species, reduce the in-source fragmentation, increase sensitivity, reproducibility and ionization efficiency, along with the ability to generate a sustained and constant electrospray, this method can be considered as a new platform for advanced glycomics.  相似文献   

8.
The structure of an intact glycosaminoglycan (GAG) chain of the bikunin proteoglycan (PG) was analyzed using a combined top-down and bottom-up sequencing strategy. PGs are proteins with one or more linear, high-molecular weight, sulfated GAG polysaccharides O-linked to serine or threonine residues. GAGs are often responsible for the biological functions of PGs, and subtle variations in the GAG structure have pronounced physiological effects. Bikunin is a serine protease inhibitor found in human amniotic fluid, plasma, and urine. Bikunin is posttranslationally modified with a chondroitin sulfate (CS) chain, O-linked to a serine residue of the core protein. Recent studies have shown that the CS chain of bikunin plays an important role in the physiological and pathological functions of this PG. While no PG or GAG has yet been sequenced, bikunin, the least complex PG, offers a compelling target. Electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry (ESI FTICR-MS) permitted the identification of several major components in the GAG mixture having molecular masses in a range of 5505-7102 Da. This is the first report of a mass spectrum of an intact GAG component of a PG. FTICR-MS analysis of a size-uniform fraction of bikunin GAG mixture obtained by preparative polyacrylamide gel electrophoresis, allowed the determination of chain length and number of sulfo groups in the intact GAGs.  相似文献   

9.
10.
Trace organic analysis of a complex matrix presents one of the most challenging problems in analytical mass spectrometry. Inselective electron-impact ionization often requires extensive sample clean-up to isolate the analyte from the matrix. Sample preparation can be greatly reduced when a hydrogen laser is used for selective photoionization of only a small fraction of the compounds introduced into the ion source. This device produces parent ions only for all compounds with ionization potentials that lie below a threshold value limited by the photon energy of 7.8 eV. The only observed interference arises from electron-impact ionization when scattered laser radiation interacts with metal surfaces, producing electrons which are then accelerated by potential fields inside the source. These can be suppressed to levels acceptable for practical analysis through proper instrumental design. Results are presented which indicate the ability of this ion source to discriminate against interfering matrix components in simple extracts from real samples such as brewed coffee, beer, and urine.  相似文献   

11.
An analytical strategy for the analysis of antigen epitopes by chemical cross-linking and mass spectrometry is demonstrated. The information of antigen peptides involved in the binding to an antibody can be obtained by monitoring the antigen peptides modified by a partially hydrolyzed cross-linker in the absence and in the presence of an antibody. This approach was shown to be efficient for characterization of the epitope on bovine prion protein bPrP(25-241) specifically recognized by a monoclonal antibody, 3E7 (mAb3E7), with only a small amount of sample (200 picomoles) needed. After cross-linking of the specific immuno complex, a matrix-assisted laser desorption/ionization (MALDI) mass spectrometer equipped with an ion conversion dynode (ICD) high-mass detector was used to optimize the amount of cross-linked complex formed at 202 kDa before proteolytic digestion. To identify the cross-linked peptides after proteolysis without ambiguity, isotope-labeled cross-linkers, disuccinimidyl suberate (DSS-d0/d12) and disuccinimidyl glutarate (DSG-d0/d6), together with high-resolution Fourier transform ion-cyclotron resonance mass spectrometry (FTICR-MS) were used. As a result, a complete fading of the peak intensities corresponding to the peptides representing the epitope was observed when bPrP/mAb3E7 complexes were formed.  相似文献   

12.
In this paper a novel workflow-based data acquisition and control system for Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is presented that facilitates a fast on-the-fly decision-making process for a wide variety of data-dependent experiments. Several new workflow implementations demonstrate the flexibility and benefit of this approach for rapid dynamic experimental design on a chromatographic timescale. The different sequence, evaluation, decision and monitoring modules are described using a selected set of examples. During a tandem liquid chromatography (LC)/FTICR-MS experiment the system is used to dynamically switch between various dissociation techniques such as electron capture dissociation (ECD) and sustained off-resonance irradiation (SORI) depending on the charge state of a tryptic peptide peak. The use of this workflow-based system for imaging FTICR-MS using a desorption electrospray ionization (DESI) source demonstrates the possibility of external control of the workflow by feedback from an imaging sample stage.  相似文献   

13.
The use of off-line high-performance capillary electrophoresis in connection with nanospray electrospray ionization quadrupole time-of-flight tandem mass spectrometry for identification of complex carbohydrates of biological origin is presented. The method was applied to the identification of O-glycosylated amino acids and -glycopeptides from the urine of patients suffering from a hereditary disease - N-acetylhexosaminidase deficiency. Structural elements typical for O-glycosylation of proteins, like expression of core 1 and 2 type O-glycans with different numbers of N-acetyllactosaminyl repeats and different degrees of sialylation, can be directly detected.  相似文献   

14.
2-(2'-octenyl)succinic acid has been identified in urine samples from children investigated for a possible inherited metabolic disease. Its structural identification has been achieved by gas chromatography/mass spectrometry using both electron ionization and chemical ionization and by tandem mass spectrometry (MS/MS) using fast-atom bombardment and high-resolution electron-ionization analyses of the molecular ion in a complex biological matrix. The localization of the double bond was obtained by interpretation of a unexpected rearrangement reaction occurring after dimethyl disulfide derivatization.  相似文献   

15.
尿液作为一种易于获取的体内毒品检材,在吸毒人员快速筛查中被广泛应用。针对传统快速筛查技术存在假阳性率高、定量能力不足以及实验室质谱技术在快速检测中存在前处理复杂、检测耗时长、使用环境苛刻等问题,该文提出了一种基于敞开式直接电离质谱技术的生物样本快速检测方法。该研究采用探针式电喷雾离子源与便携式质谱仪联用快速检测平台,优化了喷雾电压和质谱入口毛细管温度,开发了高效快速的前处理技术。基于该平台和前处理技术,5种常规毒品(甲基苯丙胺、氯胺酮、可卡因、O^(6)-单乙酰吗啡和3,4-亚甲双氧甲基苯丙胺)的尿液加标溶液的检出限为0.5~30 ng/mL,且其中4种毒品定量检测的线性相关系数大于0.99。除此之外,5种常规毒品在3个不同水平下的加标回收率为56.1%~103.7%,多次检测结果的相对标准偏差为9.0%~27.8%,说明联用检测平台与前处理方法结合可以达到良好的准确度。为了进一步检验该联用仪器的实战能力,测试了某社区戒毒康复中心40份阳性和110份阴性实际尿液样本,总体检测的准确率接近99%,且通过一次进样在20 s内可同时检测多种毒品。该研究成果有利于推动快速检测技术的发展,促进敞开式直接电离质谱仪技术的推广应用,提升一线执法服务水平。  相似文献   

16.
Previously, we have characterized the HIV-I(SF2) gp120 glycopeptides using matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) and nanospray electrospray ionization (ESI). Although we characterized 25 of 26 consensus glycosylation sites, we could not obtain any information about the extent of sialylation of the complex glycans. Sialylation is known to alter the biological activity of some glycoproteins, e.g., infectivity of some human and nonhuman primate lentiviruses is reduced when the envelope glycoproteins are extensively sialylated, and thus, characterization of the extent of sialylation of complex glycoproteins is of biological interest. Since neither MALDI/MS nor nanospray ESI provided much information about sialylation, probably because of suppression effects inherent in these techniques, we utilized online nanocapillary high performance liquid chromatography (nHPLC) with ESI/MS to characterize the sites and extent of sialylation on gp120. Eight of the known 26 consensus glycosylation sites of HIV-ISF2 gp120 were determined to be sialylated. Two of these sites were previously uncharacterized complex glycans. Thirteen high mannose sites were also determined. The heterogeneity of four of these sites had not been previously characterized. In addition, a peptide containing two consensus glycosylation sites, which had previously been determined to contain complex glycans, was also determined to be high mannose as well.  相似文献   

17.
Grape antioxidant dietary fiber (GADF) is a dietary supplement that combines the benefits of both fiber and antioxidants that help prevent cancer and cardiovascular diseases. The antioxidant polyphenolic components in GADF probably help prevent cancer in the digestive tract, where they are bioavailable. Mass spectrometry coupled to liquid chromatography is a powerful tool for the analysis of complex plant derivatives such as GADF. We use a combination of MS techniques, namely liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOF-MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) on a triple quadrupole, for the identification of the polyphenolic constituents of the soluble fraction of GADF. First, we separated the mixture into four fractions which were tested for phenolic constituents using the TOF system in the full scan mode. The high sensitivity and resolution of the TOF detector over the triple quadrupole facilitate the preliminary characterization of the fractions. Then we used LC/ESI-MS/MS to identify the individual phenols through MS/MS experiments (product ion scan, neutral loss scan, precursor ion scan). Finally, most of the identities were unequivocally confirmed by accurate mass measurements on the TOF spectrometer. LC/ESI-TOF-MS combined with MS/MS correctly identifies the bioactive polyphenolic components from the soluble fraction of GADF. High-resolution TOF-MS is particularly useful for identifying the structure of compounds with the same LC/ESI-MS/MS fragmentation patterns.  相似文献   

18.
Increasing the dimensionality of an analysis enables more detailed and comprehensive investigations of complex mixtures. One dimensional separation techniques like gas chromatography (GC) and ion mobility spectrometry (IMS) provide limited chemical information about complex mixtures. The combination of GC, ion mobility spectrometry, and time-of-flight mass spectrometry (GC-IM-TOFMS) provides three-dimensional separation of complex mixtures. In this work, a hybrid GC-IM-TOFMS with a secondary electrospray ionization (SESI) source provided four types of analytical information: GC retention time, ion mobility drift time, mass-to-charge ratios, and ion intensity. The use of secondary electrospray ionization enables efficient and soft ionization of gaseous sample vapors at atmospheric pressure. Several complex mixtures, including lavender and peppermint essential oils, were analyzed by GC-SESI-IM-TOFMS. The resulting 3D data from these mixtures, each containing greater than 50 components, were plotted as 3D projections. In particular, post-processed data plotted in three dimensions showed that many mass selected GC peaks were resolved into different ion mobility peaks. This technique shows clear promise for further in-depth analyses of complex chemical and biological mixtures.  相似文献   

19.
20.
The potential of electrospray ionization (ESI) Fourier transform ion cyclotron mass spectrometry (FTICR-MS) to assist in the structural characterization of monomeric and dimeric derivatives of the macrophage colony stimulating factor beta (rhM-CSF beta) was assessed. Mass spectrometric analysis of the 49 kDa protein required the use of sustained off-resonance irradiation (SORI) in-trap cleanup to reduce adduction. High resolution mass spectra were acquired for a fully reduced and a fully S-cyanylated monomeric derivative (approximately 25 kDa). Mass accuracy for monomeric derivatives was better than 5 ppm, after applying a new calibration method (i.e., DeCAL) which eliminates space charge effects upon high accuracy mass measurements. This high mass accuracy allowed the direct determination of the exact number of incorporated cyanyl groups. Collisionally induced dissociation using SORI yielded b- and y-fragment ions within the N- and C-terminal regions for the monomeric derivatives, but obtaining information on other regions required proteolytic digestion, or potentially the use of alternative dissociation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号