首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The momentum distributions of the valence orbitals for water well as the binding energy spectra in the region 10–45 eV have been reinvestigated with a high momentum resolution (≈0.1 a0?1 fwhm) binary (e.2e) spectrometer. The binding energy spectra show considerable satellite structure in the region > 25 eV which is consistent with theoretical predictions of final state configuration interaction (many-body effects) involving the (2a1)?1 hole state. An investigation of the momentum distribution in the satellite region confirms this assignment. This is in accord with a variety of recent theoretical studies and also consistent with earlier experiments. Differences suggested in earlier comparisons between theory and low momentum resolution experiments for the momentum distributions of the 1b1 and 3a1 orbitals have been verified. Several possible theoretical studies are suggested to investigate further this discrepancy between experiment and theory. Bonding effects and thenature of the molecular orbitals of H2O in momentum space are also discussed.  相似文献   

2.
Valence-shell binding energy spectra and momentum distributions of CS2 have been measured using non-coplanar symmetric binary (e,2e) spectroscopy. The present measurements are compared with previously published binding energy spectra calculated using the many body 2ph-TDA Green's function (GF) method and the symmetry-adapted cluster configuration-interaction (SAC CI) method. The measured and the calculated binding energy spectra both show extensive population splittings particularly above 20 eV, confirming a significant breakdown of independent particle ionization picture. A relatively strong-outer valence many-body state at 17.0 eV is shown to be satellite of the (2π0)?1 state, in accord with earlier conclusions of photoelectron studies. Momentum distributions measured at several carefully chosen binding energies are compared with the corresponding molecular orbital momentum distributions calculated using small and extended gaussian basis sets. The good qualitative agreement between momentum distributions measured in the inner-valence region wth theoretical 4σm and 5σg orbital momentum distributions confirms the qualitative predictions of satellite parentages by GF and SAC CI calculations. Momentum and position density contour maps of individual orbitals are used to interpret the shapes and atomic characters of the experimental momentum distributions. Momentum densities of the valence orbitals of CS2 are compared with those of the respective valence isoelectronic species CO2  相似文献   

3.
Here an electron momentum spectroscopy study on the electronic structure of valence shell of iso-dichloroethylene molecule is reported. The experiment is carried out with a binary (e, 2e) spectrometer at incident electron energy of 1200 eV, employing noncoplanar symmetric arrangement. The binding energy spectra and electron momentum distributions (EMDs) of iso-dichloroethylene valence shell have been obtained. Theoretical EMDs are predicted with both Hartree-Fock and density functional theory methods, generally indicating good agreements with the measurement results. The interference effect is observed to significantly influence the EMDs of 2a2 and 5b2 Cl lone-pair orbitals.  相似文献   

4.
The valence-shell binding energy spectra (8–44 eV) and molecular orbital momentum distributions of OCS have been studied by non-coplanar symmetric binary (e,2e) spectroscopy. Existing theoretical binding energy spectra calculated using the many-body 2ph-TDA Green's function (GF) method and using the symmetry-adapted cluster (SAC) on method are compared with the experiment. Intense many-body structure in the measured and calculated binding energy spectra indicates the general breakdown of the independent particle ionization picture. Experimental momentum distributions are compared with those calculated using ab initio SCF wavefunctions of minimal basis set quality and of near Hartree—Fock quality. Excellent agreement between the experimental momentum distributions and those calculated by the near Hartree—Fock wavefunction is obtained for the three innermost valence orbitals: 8σ, 7σ and 6σ. The correct order of the close lying outer-valence 2π and 9σ orbitals is unambiguously identified from the shapes of the measured momentum distributions. Momentum and position contour density maps computed from theoretical wavefunctions of near Hartree—Fock quality are used to interpret the shapes and atomic characters of the observed momentum distributions. The momentum densities of the outermost-valence antibonding π orbitals and of the outermost-valence bonding σ orbitals of the linear triatomic group: CO2, CS2 and OCS are compared respectively with each other. The associated chemical trends are discussed within the existing framework of momentum-space chemical principles.  相似文献   

5.
The electron binding energy spectra and momentum profiles of the valence orbitals of difluoromethane, also known as HFC32 (HFC-hydrofluorocarbon) (CH(2)F(2)), have been studied by using a high resolution (e,2e) electron momentum spectrometer, at an impact energy of 1200 eV plus the binding energy, and by using symmetric noncoplanar kinematics. The experimental momentum profiles of the outer valence orbitals and 4a(1) inner valence orbital are compared with the theoretical momentum distributions calculated using Hartree-Fock and density functional theory (DFT) methods with various basis sets. In general, the shapes of the experimental momentum distributions are well described by both the Hartree-Fock and DFT calculations when large and diffuse basis sets are used. However, the result also shows that it is hard to choose the different calculations for some orbitals, including the methods and the size of the basis sets employed. The pole strength of the ionization peak from the 4a(1) inner valence orbital is estimated.  相似文献   

6.
Results of a study of the valence electronic structure of norbornene (C(7)H(10)), up to binding energies of 30 eV, are reported. Experimental electron momentum spectroscopy (EMS) and theoretical Green's function and density functional theory approaches were utilized in this investigation. A stringent comparison between the electron momentum spectroscopy and theoretical orbital momentum distributions found that, among the tested models, the combination of the Becke-Perdew functional and a polarized valence basis set of triple-zeta quality provides the best representation of the electron momentum distributions for all 19 valence orbitals of norbornene. This experimentally validated model was then used to extract other molecular properties of norbornene (geometry, infrared spectrum). When these calculated properties are compared to corresponding results from independent measurements, reasonable agreement is typically found. Due to the improved energy resolution, EMS is now at a stage to very finely image the effective topology of molecular orbitals at varying distances from the molecular center, and the way the individual atomic components interact with each other, often in excellent agreement with theory. This will be demonstrated here. Green's Function calculations employing the third-order algebraic diagrammatic construction scheme indicate that the orbital picture of ionization breaks down at binding energies larger than about 22 eV. Despite this complication, they enable insights within 0.2 eV accuracy into the available ultraviolet emission and newly presented (e,2e) ionization spectra. Finally, limitations inherent to calculations of momentum distributions based on Kohn-Sham orbitals and employing the vertical depiction of ionization processes are emphasized, in a formal discussion of EMS cross sections employing Dyson orbitals.  相似文献   

7.
Bromomethane (CH3Br) and iodomethane (CH3I) have been studied by binary (e,2e) coincidence spectroscopy at 1200 eV using non-coplanar symmetric kinematics. Separation energy spectra have been determined in the energy range up to 47 eV at azimuthal angles of 0° and 8° for CH3Br and 0° and 6° for CH3I. The separation energy spectra and the electron momentum distributions measured for each of the valence orbitals are compared with theoretical predictions employing SCF wavefunctions and outer valence type and extended 2 ph-TDA Green function calculations. Electron density and momentum density maps have been calculated for all the valence orbitals using the SCF wavefunctions, and they are used to explain trends and contrasts in the electronic structure and bonding properties of these halomethanes in both position and momentum space.  相似文献   

8.
A comprehensive study, throughout the valence region, of the electronic structure and electron momentum density distributions of the four conformational isomers of n-pentane is presented. Theoretical (e,2e) valence ionization spectra at high electron impact energies (1200 eV+electron binding energy) and at azimuthal angles ranging from 0 degrees to 10 degrees in a noncoplanar symmetric kinematical setup are generated according to the results of large scale one-particle Green's function calculations of Dyson orbitals and related electron binding energies, using the third-order algebraic-diagrammatic construction [ADC(3)] scheme. The results of a focal point analysis (FPA) of relative conformer energies [A. Salam and M. S. Deleuze, J. Chem. Phys. 116, 1296 (2002)] and improved thermodynamical calculations accounting for hindered rotations are also employed in order to quantitatively evaluate the abundance of each conformer in the gas phase at room temperature and reliably predict the outcome of experiments on n-pentane employing high resolution electron momentum spectroscopy. Comparison with available photoelectron measurements confirms the suggestion that, due to entropy effects, the trans-gauche (tg) conformer strongly dominates the conformational mixture characterizing n-pentane at room temperature. Our simulations demonstrate therefore that experimental measurements of (e,2e) valence ionization spectra and electron momentum distributions would very consistently and straightforwardly image the topological changes and energy variations that molecular orbitals undergo due to torsion of the carbon backbone. The strongest fingerprints for the most stable conformer (tt) are found for the electron momentum distributions associated with ionization channels at the top of the inner-valence region, which sensitively image the development of methylenic hyperconjugation in all-staggered n-alkane chains.  相似文献   

9.
The outer valence orbital momentum distributions of CO2 have been reinvestigated using a high momentum resolution (0.1 ao?1 fwhm) binary (e,2e) spectrometer operated at 1200 eV impact energy under the non-coplanar symmetric scattering condition. Generally good agreement of the measured momentum distributions with theoretical momentum distributions calculated using literature SCF double-zeta quality wavefunctions has been obtained for the 1πg, (1πu + 3σu) and 4σg orbitals. Although there is a reasonable agreement of the measured momentum distributions with earlier low momentum resolution (0.4 ao?1 fwhm) non-coplanar measurements at 400 eV impact energy reported by Cook and Brion, given the large differences in the momentum resolutions much more definitive results are obtained in the present study. In particular, the significantly higher momentum resolution clearly shows the mixed s-p character of the 4σg orbital. The present study also gives a much better agreement with theory in the case of the 4σg momentum distribution. For each orbital the calculated and where possible the experimentally determined spherically averaged momentum distributions are compared and contrasted with their respective two-dimensional momentum and position density maps. These together with three-dimensional surface plots at selected constant density values of the four outermost orbitals are used to provide a detailed comparison of momentum-space bonding and orbital properties with their more familiar position-space counterparts in the CO2 triatomic molecule. The calculated momentum-space density contour maps of the core orbitals exhibit rather large density oscillations and the feasibility of future experiments is discussed.  相似文献   

10.
We report a measurement of electron momentum distributions of valence orbitals of cyclopentene employing symmetric noncoplanar (e, 2e) kinematics at impact energies of 1200 and 1600 eV plus the binding energy. Experimental momentum profiles for individual ionization bands are obtained and compared with theoretical calculations considering nuclear dynamics by harmonic analytical quantum mechanical and thermal sampling molecular dynamics approaches. The results demonstrate that molecular vibrational motions including ring-puckering of this flexible cyclic molecule have obvious influences on the electron momentum profiles for the outer valence orbitals, especially in the low momentum region. For π*-like molecular orbitals 3a'', 2a'', and 3a', the impact-energy dependence of the experimental momentum profiles indicates a distorted wave effect.  相似文献   

11.
The development of a third-generation electron momentum spectrometer with significantly improved energy and momentum resolutions at Tsinghua University (ΔE = 0.45–0.68 eV, Δθ = ±0.53° and Δ? = ±0.84°) has enabled a reinvestigation of the valence orbital electron momentum distributions of H2O with improved statistical accuracy. The measurements have been conducted at impact energies of 1200 eV and 2400 eV in order to check the validity of the plane wave impulse approximation. The obtained ionization spectra and electron momentum distributions have been compared with the results of computations carried out with Hartree Fock [HF] theory, density functional theory in conjunction with the standard B3LYP functional, one-particle Green’s function [1p-GF] theory along with the third-order algebraic diagrammatic construction scheme [ADC(3)], symmetry adapted cluster configuration interaction [SAC-CI] theory, and a variety of multi-reference [MR-SDCI, MR-RSPT2, MR-RSPT3] theories. The influence of the basis set on the computed momentum distributions has been investigated further, using a variety of basis sets ranging from 6-31G to the almost complete d-aug-cc-pV6Z basis set. A main issue in the present work pertains to a shake-up band of very weak intensity at 27.1 eV, of which the related momentum distribution was analyzed for the first time. The experimental evidences and the most thorough theoretical calculations demonstrate that this band borrows its ionization intensity from the 2a1 orbital.  相似文献   

12.
We report on the results of an exhaustive study of the valence electronic structure of norbornane (C(7)H(12)), up to binding energies of 29 eV. Experimental electron momentum spectroscopy and theoretical Green's function and density functional theory approaches were all utilized in this investigation. A stringent comparison between the electron momentum spectroscopy and theoretical orbital momentum distributions found that, among all the tested models, the combination of the Becke-Perdew functional and a polarized valence basis set of triple-zeta quality provides the best representation of the electron momentum distributions for all of the 20 valence orbitals of norbornane. This experimentally validated quantum chemistry model was then used to extract some chemically important properties of norbornane. When these calculated properties are compared to corresponding results from other independent measurements, generally good agreement is found. Green's function calculations with the aid of the third-order algebraic diagrammatic construction scheme indicate that the orbital picture of ionization breaks down at binding energies larger than 22.5 eV. Despite this complication, they enable insights within 0.2 eV accuracy into the available ultraviolet photoemission and newly presented (e,2e) ionization spectra, except for the band associated with the 1a(2) (-1) one-hole state, which is probably subject to rather significant vibronic coupling effects, and a band at approximately 25 eV characterized by a momentum distribution of "s-type" symmetry, which Green's function calculations fail to reproduce. We note the vicinity of the vertical double ionization threshold at approximately 26 eV.  相似文献   

13.
The binding energy spectra and momentum distributions of all valence orbitals of propene were studied by electron momentum spectroscopy (EMS) as well as Hartree-Fock and density functional theoretical calculations. The experiment was carried out at impact energies of 1200 eV and 600 eV on the state-of-the-art EMS spectrometer developed at Tsinghua University recently. The experimental momentum profiles of the valence orbitals were obtained and compared with the various theoretical calculations. Moreover, the experiment with a new analysis method presents a strong support for the correct ordering of the orbital 8a' and 1a', i.e., 9a' < 8a' < 1a' < 7a'.  相似文献   

14.
An extensive study, throughout the valence region, of the electronic structure, ionization spectrum, and electron momentum distributions of ethanol is presented, on the ground of a model that focuses on a mixture of the gauche and anti conformers in their energy minimum form, using weight coefficients obtained from thermostatistical calculations that account for the influence of hindered rotations. The analysis is based on accurate calculations of valence one-electron and shakeup ionization energies and of the related Dyson orbitals, using one-particle Green's Function (1p-GF) theory in conjunction with the so-called third-order Algebraic Diagrammatic Construction scheme [ADC(3)]. The confrontation against available UPS (HeI) measurements indicates the presence in the spectral bands of significant conformational fingerprints at outer-valence ionization energies ranging from approximately 14 to approximately 18 eV. The shakeup onset is located at approximately 24 eV, and a shoulder at approximately 14.5 eV in the He I spectrum can be specifically ascribed to the minor anti (C(s)) conformer fraction. Thermally and spherically averaged Dyson orbital momentum distributions are computed for seven resolvable bands in model (e, 2e) ionization spectra at an electron impact energy of 1.2 keV. A comparison is made with results obtained from standard (B3LYP) Kohn-Sham orbitals and EMS measurements employing a high-resolution spectrometer of the third generation. The analysis is qualitatively in line with experiment and reveals a tremendously strong influence of the molecular conformation on the outermost electron momentum distributions. Quantitatively significant discrepancies with experiment can nonetheless be tentatively ascribed to strong dynamical disorder in the gas phase molecular structure.  相似文献   

15.
The experimental technique of electron momentum spectroscopy (EMS ) (i.e., binary (e, 2e) spectroscopy) is discussed together with typical examples of its applications over the past decade in the area of experimental quantum chemistry. Results interpreted within the framework of the plane wave impulse and the target Hartree—Fock approximations provide direct measurements of, spherically averaged, orbital electron momentum distributions. Results for a variety of atoms and small molecules are compared with calculations using a range of Fourier transformed SCF position space wavefunctions of varying sophistication. Measured momentum distributions (MD ) provide a “direct” view of orbitals. In addition to offering a sensitive experimental diagnostic for semiempirical molecular wavefunctions, the MD's provide a chemically significant, additional experimental constraint to the usual variational optimization of wavefunctions. The measured MD's clearly reflect well known characteristics of various chemical and physical properties. It appears that EMS and momentum space chemistry offer the promise of supplementary perspectives and new vistas in quantum chemistry, as suggested by Coulson more than 40 years ago. Binding energy spectra in the inner valence region reveal, in many cases, a major breakdown of the simple MO model for ionization in accord with the predictions of many-body calculations. Results are considered for atomic targets, including H and the noble gases. The measured momentum distribution for H2 is also compared with results from Compton scattering. Results for H2 and H are combined to provide a direct experimental assessment of the bond density in H2, which is compared with calculations. The behavior of the outer valence MD ''s for small row two and row three hydride molecules such as H2O and H2S, NH3, HF, and HCl are consistent with well known differences in chemical and physical behavior such as ligand-donor activity and hydrogen bonding. MD measurements for the outermost valence orbitals of HF, H2O and NH3 show significant differences from those calculated using even very high-quality wavefunctions. Measurements of MD's for outer σg orbitals of small polyatomic molecules such as CO2, COS, CS2, and CF4 show clear evidence of mixed s and p character. It is apparent that EMS is a sensitive probe of details of electronic structure and electron motion in atoms and molecules.  相似文献   

16.
The binding energy spectra and electron momentum distributions for the complete valence orbitals of ethanethiol were measured for the first time by binary (e, 2e) electron momentum spectroscopy employing non-coplanar symmetric kinematics at an impact energy of 1200 eV plus binding energy. The experimental results are generally consistent with the theoretical calculations using density functional theory and Hartree-Fock methods with various basis sets. A possible satellite line at 17.8 eV in binding energy spectrum was observed and studied by electron momentum spectroscopy.  相似文献   

17.
The binding energy spectra and electron distributions in momentum space of the valence orbitals of cyclopentane (C(5)H(10)) are studied by Electron Momentum Spectroscopy (EMS) in a noncoplanar symmetric geometry. The impact energy was 1200 eV plus binding energy and energy resolution of the EMS spectrometer was 1.2 eV. The experimental momentum profiles of the outer valence orbitals are compared with the theoretical momentum distributions calculated using Hartree-Fock and density functional theory (DFT) methods. The shapes of the experimental momentum distributions are generally quite well described by both the Hartree-Fock and DFT calculations when the large and diffuse basis sets are used.  相似文献   

18.
Carbon tetraflouoride has been investigated by binary (e,2e) spectroscopy at 1200 eV impact energy. Binding energy spectra (10–60 eV) at azimuthal angles of 0° and 8° are reported and are found to be in quantitative agreement with a previous Green's function calculated spectrum. Momentum distributions corresponding to individual orbitals are also reported and compared with theoretical momentum distributions evaluated using double-zeta quality SCF wavefunctions. Excellent agreement between experimental and theories is found for the strongly bonding 3t2 orbital and the antibonding 4a1 orbital but agreement is less good for the outermost non-bonding orbitals. Intense structure due to molecular density (bond) oscillation is observed experimentally in the region above 1.0 ao?1 in the case of the non-bonding 4t2 orbital. It is also notable that the measured 4a1 momentum distribution exhibits an extremely well-defined “p” character with clear separation between the s and p components. Contour maps of the position-space and momentum-space orbital densities in the F-C-F plane of the molecule are used to provide a qualitative interpretation of the features observed in the momentum distribution. In order to further extend momentum-space chemical concepts to three-dimensional systems, constant density surface plots are also used to give a more comprehensive view of the density functions of the CF8 molecule.  相似文献   

19.
The binding energy spectra and electron momentum distributions for the outer valence molecular orbitals of gaseous 2-fluoroethanol have been measured by the non-coplanar asymmetric (e, 2e) spectrometer at impact energy of 2.5 keV plus binding energy. The quantitative calculations of the ionization energies and the relevant molecular orbitals have been carried out by using the outer-valence Green’s function method and the density functional theory with B3LYP hybrid functional. The observed ionization bands in binding energy spectra, as well as the previous photoelectron spectrum which was not assigned, have been assigned for the first time through the comparison between experiment and theory. In general, the theoretical electron momentum distributions calculated by B3LYP method with aug-cc-pVTZbasis set are in line with the experimental ones when taking into account the Boltzmannweighted thermo-statistical abundances of five conformers of 2-fluoroethanol.  相似文献   

20.
A complete study of the valence electronic structure and related electronic excitation properties of cyclopentene in its C(s) ground state geometry is presented. Ionization spectra obtained from this compound by means of photoelectron spectroscopy (He I and He II) and electron momentum spectroscopy have been analyzed in details up to electron binding energies of 30 eV using one-particle Green's function (1p-GF) theory along with the outer-valence (OVGF) and the third-order algebraic diagrammatic construction [ADC(3)] schemes. The employed geometries derive from DFT/B3LYP calculations in conjunction with the aug-cc-pVTZ basis set, and closely approach the structures inferred from experiments employing microwave spectroscopy or electron diffraction in the gas phase. The 1p-GF/ADC(3) calculations indicate that the orbital picture of ionization breaks down at electron binding energies larger than approximately 17 eV in the inner-valence region, and that the outer-valence 7a' orbital is also subject to a significant dispersion of the ionization intensity over shake-up states. This study confirms further the rule that OVGF pole strengths smaller than 0.85 foretell a breakdown of the orbital picture of ionization at the ADC(3) level. Spherically averaged (e, 2e) electron momentum distributions at an electron impact energy of 1200 eV that were experimentally inferred from an angular analysis of EMS intensities have been interpreted by comparison with accurate simulations employing ADC(3) Dyson orbitals. Very significant discrepancies were observed with momentum distributions obtained from several outer-valence ionization bands using standard Kohn-Sham orbitals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号