首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The synthesis of pyrimido[4,5-d]pyridazin-2-one-4-thione (II), pyrimido[4,5-d]pyridazine-2,4-dithione (VI), 4-aminopyrimido[4,5-d]pyridazine-2-thione (III), 2-aminopyrimido[4,5-d]-pyridazin-4-one (X), 2-methylpyrimido[4,5-d]pyridazin-4-one (XII), and pyrimido[4,5-d]-pyridazin-4-one (XIII) are reported together with several new pyridazine intermediates.  相似文献   

2.
The synthesis of 5-chloro-8-(ω-dialkylaminoalkylamino)pyrazino[2,3-d]pyridazine (II) proceeded smoothly when 5,8-dichloropyrazino[2,3-d]pyridazine (I) was allowed to react with ω-dialkylaminoalkylamines. Similarly, the reaction of 5,8-dichloropyrido[2,3-d]pyridazine (IV) with ω-dialkylaminoalkylamines gave the two expected products 8-chloro-5-(ω-dialkylaminoalkylamino)pyrido[2,3-d]pyridazine (V) and 5-chloro-8-(ω-dialkylaminoalkylamino)pyrido[2,3-d]pyridazine (VI) in a 2:3 ratio. 4,7-Dichloroimidazo[4,5-d]pyridazine (XII) was found to be much less reactive towards nucleophilic substitutions and more vigorous conditions resulted in disubstituted products (XIII). 7-Chloroimidazo[4,5-c]pyridazine (XVIII) was also found to be much less reactive towards nucleophilic substitution. In both of these cases one of the imidazole nitrogen atoms was blocked by a tetrahydropyranyl group which increased the reactivities and led to the desired monosubstituted products XVII from XII and in the latter case the expected products (XIX).  相似文献   

3.
The Hofmann reaction on 6-methylpyridazine-3,4-dicarboxamide (1) gave a mixture of 3-methylpyrimido[4,5-c]pyridazine-5,7-dione (2), 3-methylpyrimido[5,4-c]pyridazine-6,8-dione (3) and an acid (4) of unknown structure. The Hofmann reaction on pyridazine-3,4-dicarboxamide (9) gave a mixture of pyrimido[4,5-c]pyridazine-5,7-dione ( 10 ) and an acid ( 11 ) of unknown structure. The reaction of 3-amino-6-methylpyridazine-4-carboxamide ( 18 ) with ethyl orthoformate gave 3-methylpyrimido[4,5-c]pyridazin-5-one ( 21 ). 4-Aminopyridazine-3-carboxamide ( 36 ) upon fusion with urea gave pyrimido[5,4-c]pyridazine-6,8-dione ( 37 ) while with ethyl orthoformate 36 gave pyrimido[5,4-c]pyridazin-8-one ( 38 ). Pyrimido[5,4-c]-pyridazine-8-thione ( 39 ) was obtained by the action of phosphorus pentasulfide on 38. 4-Amino-3-cyanopyridazine ( 16 ) when treated with formamide produced 8-aminopyrimido[5,4-c]-pyridazine ( 41 ). The synthesis of 4-aminopyridazine-3-carboxamide ( 36 ) and 4-amino-3-cyanopyridazine ( 16 ), both key intermediates in the synthesis of the novel pyrimido[5,4-c]pyridazine ring system was accomplished by the Reissert reaction of 4-aminopyridazine-2-oxides and subsequent conversion of the nitrile to the amide.  相似文献   

4.
The synthesis of 1,2-dihydro[1]benzofuro[2,3-d]pyridazin-1-one and 3,4-dihydro [1]benzofuro[2,3-d]pyridazin-4-one was accomplished by the eyclization of appropriately carbonyl-substituted benzofuran derivatives. Another successful synthetic route was provided using 1,2,3,4-tetrahydro[1]benzofuro[2,3-d]pyridazine-1,4 dione and 1,2,3,4-tetrahydro[1]benzofuro[2,3-d]pyridazin-4-one. The structure of a nitrobenzofuropyridazin-4-one was established using nmr and the nuclear Overhauser effect.  相似文献   

5.
Several imidazo[4,5-d]pyridazine nucleosides which are structurally similar to inosine were synthesized. Anhydrous stannic chloride-catalyzed condensation of persilylated imidazo[4,5-d]-pyridazin-4(5H)one (1) and imidazo[4,5-d]pyridazine-4,7(5H,6H)dione ( 16 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose ( 3 ) provided (after sodium methoxide deblocking) 6-β-D-ribo furanosylimidazo[4,5-d]pyridazin-4(5H)one (5) and 3,6-di-(β-D-ribofuranosyI)imidazo[4,5-d]pyridazin-4-one ( 7 ); and 1-(β-D-ribofuranosyl)imidazo[4,5-d]pyridazine-4,7(5H,6H)dione ( 19 ) and 1,5 or 6-di-(β-D-ribofuranosyl)imidazo[4,5-d ]pyridazine-4,7(5H or 6H)dione ( 21 ), respeeitvely. 4,7-Diehloro-1-β-D-ribofuranosylimidazo[4,5-d]pyridazine ( 12 ) and dimethyl 1-β-D-ribofuranosylimidazole-4,5-dicarboxylate ( 26 ), both prepared from stannic chloride-catalyzed ribosylations of the corresponding heterocycles, were converted in several steps to 3-β-D-ribo-furanosy limidazo[4,5-d]pyridazin-4(5H)one ( 14 ) and nucleosidc 19 , respectively. Acid-catalyzed isopropylidenation of mesomeric betaine 7 or nuclcoside 14 provided 3-(2,3-isopropylidene-β-D-ribofuranosyl)imidazo[4,5-d]pyrizin-4(5H)one ( 31 ). 1-β-D-Ribofuranosylimidazo[4,5-d]-pyridazine ( 29 ) was obtained in several steps from nueleoside 12 . The structure of the nucleosides was established by the use of carbon-13 and proton nmr.  相似文献   

6.
Several pyridazines have been prepared as intermediates in the synthesis of monosubstituted imidazo[4,5-d]pyridazines, monosubstituted v-triazoIo[4,5-d]pyridazines and monosubstituted pyrazino [2,3d] pyridazines. The new ring system, 7H-imidazo[4,5-d]tetrazolo[l,5-b] pyridazine (XIV) has been prepared unsubstituted. Furthermore, unsubstituted imidazo[4,5-d]pyridazine (XI) has been prepared. Calculations for XI and XIV were made by approximate SCF LCAO-MO with CNSO II theory.  相似文献   

7.
1,4-Bis(methyIthio)pyridazino[4,5-d]pyridazine (IV) was synthesized from 4,5-pyridazinedi-carboxylic acid in three steps. By employing IV as an intermediate, various 1,4-disubstituted pyridazino[4,5-d]pyridazine derivatives of classes 1,4-N,S; 1,4-N,O; 1,4-O,S; and 1,4-O,O were prepared by one-step or two-step nucleophilic substitution reactions. Steric, polar and resonance effects were observed in some of these reactions and are discussed.  相似文献   

8.
The parent imidazo[4,5-c]pyridazine (IV) has been prepared for the first time by three different routes. 1-Methylimidazo[4,5-c]pyridazine (XX) and 3-methylimidazo[4,5-c]pyridazine (XXVII) have been prepared by unequivocal syntheses. The constitution of the methylation product of imidazo[4,5-c]pyridazine-2-thiol (VIII) has been shown to be 2-methylthioimidazo[4,5-c]-pyridazine (IX) by the unequivocal syntheses of 1-methylimidazo[4,5-c]pyridazine-2-thiol (XXIII) and 3-methylimidazo[4,5-c]pyridazine-2-thiol (XXXIII). Likewise, the structure of the methylation product (XIII) was shown to be S-methylation by the unequivocal syntheses of 1-methyl-2-methylthio-6-chloroimidazo[4,5-c]pyridazine (XXIV) and 3-methyl-2-methylthio-6-chloroimidazo[4,5-c]pyridazine (XXXI), respectively. Several 7-substituted amino-v-triazolo-[4,5-c]pyridazines (XXXVIII) have been prepared from 7-chloro-v-triazolo[4,5-c]pyridazine (XXXVII).  相似文献   

9.
A method was developed for the synthesis of 5-carbethoxy-4-formyl-1,2,3-thiadiazole (I), its isomer (II); 5-benzoyl-4-formyl-1,2,3-thiadiazole (III), and its isomer (IV). It was demonstrated that although compounds I, III and IV with hydrazine gave 7H-1,2,3-thiadiazolo[4,5-d]-pyridazin-7-one (XXII), 7-phenyl-1,2,3-thiadiazolo[4,5-d]pyridazine (XXIII) and 4-phenyl-1,2,3-thiadiazolo[4,5-d]pyridazine (XXV), respectively; however, compound I gave its corresponding hydrazone (XXIV).  相似文献   

10.
A synthetic pathway to 3-methylisoxazolo[4,5-d]pyridazine and some of its derivatives is described. Uv irratiation of 4,7-dimethoxy (XVII) and 7-chloro-4-hydrazino-3-methylisoxazolo[4,5-d]pyridazine (IX) shows that both intramolecular rearrangements and solvent involving reactions can occur.  相似文献   

11.
The synthesis and properties of several 1,4-dimethylpyridazino[4,5-d]pyridazines are described. Treatment of diethyl 3,6-dimethylpyridazine-4,5-dicarboxylate ( 1a ) with lithium aluminium hydride and hydrazine did not afford the expected 1,4-dimethylpyridazino[4,5-d]pyridazine ( 21b ) but a mixture of compounds 13, 18, 19 , and 20 , whose structures were deduced from spectroscopic data.  相似文献   

12.
The synthesis of 4-(3,5-dimethylpyrazol-1-yl)-v-triazolo[4,5-d]pyridazine, 4-(3,5-dimethylpyrazol-1-yl)imid-azo[4,5-d]pyridazine and several S-substituted derivatives of 4-(3,5-dimethylpyrazol-1-yl)imidazo[4,5-d]pyrid-azine-2-thiol is reported. These syntheses were carried out to provide a variety of interesting compounds for biological screening.  相似文献   

13.
Reaction of 4-acyl-3H-imidazo[1,5-b]pyridazine-5,7-(6H)diones with hydrazine hydrate gave 3R-5R′-8-oxo-1,4,7,8-tetrahydropyridazino[4,5-c]pyridazine together with 3R-5R′-8-oxo-7,8-dihydropyridazino[4,5-c]pyridazine derivatives. Their structures were assigned by means of elemental analyses and spectroscopic data (ir, uv, nmr and ms). The conclusive structural elucidation involved the fact that 2R-4-ethoxycarbonyl-3H-imidazo[1,5-b]pyridazine-5,7-(6H)-diones treated with hydrazine hydrate afforded 3R-5,8-dioxo-1,4,5,6,7,8-hexahydropyridazino-[4,5-c]pyridazine which, upon dehydrogenation, gave products previously reported in the literature.  相似文献   

14.
The 3H-imidazo[4,5-c]pyridazine, 1H-imidazo[4,5-d]pyridazine, and 1H-benzimidazole analogues of the potent anticonvulsant purine 9-(2-fluorobenzyl)-6-methylamino-9H-purine (1, 78U79) were synthesized and tested for anticonvulsant activity. The 3H-imidazo[4,5-c]pyridazines 8 and 9 were prepared in five stages from 3,4,5-trichloropyridazine (2) . The 1H-imidazolo[4,5-d]pyridazine 15 was synthesized in four stages from 5-[(benzyloxy)methyl]-1,5-dihydro-4H-imidazo[4,5-d] pyridazin-4-one (10a) . The benz-imidazole analogues 18 and 20 were prepared from 2,6-dinitroaniline in three stages. These compounds were one-tenth or less as active as 1 in protecting rats against maximal electroshock-induced seizures.  相似文献   

15.
The synthesis of some pyrido[2,3-c]pyridazines from 5,8-diehloro-3-methyl-2-oxo-2H-pyrano-[2,3-d]pyridazine (I) is described. Attempted oxidation of 8-amino-3-chloro-1,6-dimethyl-4,7-dioxo-1,4,7,8-tetrahydropyrido[2,3-c]pyridazine (VI) with LTA led only to the deaminated compound VII. Treatment of VI with LTA A in the presence of cyclohexene gave the nitrene adduct XI.  相似文献   

16.
The synthesis of the novel pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyridazine ring system and some of its derivatives has been accomplished such as 4-amino-1-phenyl-5,8-dioxo-, 4-amino-5,8-dioxo-, 1-phenyl-5,8-dioxo-, 5,8-dioxo-, 5,8-dichloro-1-phenyl-, 5-ethoxy-1-phenyl- and 8-ethoxy-1-phenylpyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrid-azines.  相似文献   

17.
Pyrazino[2,3-d]pyridazine (I) was synthesized by two different routes. 5, 8-Dihydroxy-pyrazino[2, 3-d]pyridazine (IV) was converted to 5, 8-dichloropyrazino[2, 3-d]pyridazine (V) and 5, 8-dibromopyrazino[2, 3-d]pyridazine (Va). When V was treated with various benzyl mercaptans and alkoxides the corresponding disubstituted derivatives were obtained. Compound V when allowed to react with aromatic amines gave 5, 8-bisamino-pyrazino[2,3-d]pyridazines, however, with aliphatic amines only mono substituted products were obtained substituted in the 8-position. The reaction of pyrazine-2, 3-dinitrile with hydrazine gave 5, 8-diaminopyrazino[2, 3-d]pyridazine (X).  相似文献   

18.
The reaction of 5-hydrazinopyridazin-3(2H)-ones 1 with α-keto diester 2 in acetic acid afforded the corresponding 4,6-dihydropyridazino[4,5-c]pyridazin-5(1H)-ones 3 and pyrrolo[2,3-d)pyridazin-4(5H)-ones 4 . Compounds 3 were also obtained from 4-bromo-5-hydrazinopyridazin-3(2H)-ones 8 and 2 under milder conditions. 5-Bromo-4-hydrazinopyridazin-3(2H)-one 9 , the regioisomer of 8b , also reacted readily with 2a to give 4,7-dihydropyridazino[4,5-c]pyridazin-8(1H)-one 10b , the regioisomer of 3b .  相似文献   

19.
Certain 4-alkylamino and 4-arylalkylamino derivatives of the imidazo- and v-triazolo[4,5-d]pyridazine ring systems were prepared and evaluated against two human colon carcinomas (DLD-1 and HCT-15) and one human lung carcinoma (LX-1), in vitro. 4-Methylthioimidazo[4,5-d]pyridazine ( 1 ) and 4-methylthio-v-triazolo-[4,5-d]pyridazine ( 9 ) served as precursors to the title compounds. Treatment of these heterocycles with the appropriate amine (ammonia, methylamine, dimethylamine, benzylamine and hydrazine) provided the desired derivatives of that ring system. 4-AIP ( 2 ) and 2-aza-4-AIP ( 10 ) served as precursors to the 4-dimethylaminomethyleneamino derivatives 6 and 14 , respectively. Likewise, the 4-hydrazino analogs ( 7 and 15 ) served as intermediates in the syntheses of benzaldehyde-p-[bis(2-chloroethyl)amino]amino[4,5-d]-pyridazin-4-yl-hydrazone ( 8 ) and benzaldehyde-p-[bis(2-chloroethyl)amino]amino-v-triazolo[4,5-d]pyridazin-4-yl-hydrazone ( 16 ), respectively.  相似文献   

20.
The reaction of 4-chloro-5-cyano-2-methylthiopyrimidine (I) with ethyl mercaptosuccinate (II) in refluxing ethanol containing sodium carbonate has afforded diethyl 3-amino-2-(methyl-thio)-7H-thiopyrano[2,3-d]pyrimidine-6,7-dicarboxylate (IV). Displacement of the methylthio group in IV with hydrazine gave the corresponding hydrazino derivative which underwent Schiff base formation with benzaldehyde or 2,6-dichlorobenzaldehyde. Treatment of IV in refluxing acetic anhydride afforded the corresponding diacetylated amino derivative. Partial saponification of IV with sodium hydroxide gave 5-amino-2-(methylthio)-7H-thiopyrano-[2,3-d]pyrimidine 6,7-dicarboxylic acid 6 ethyl ester (VIII). The reaction of 4-amino-6-chloro-5-cyano-2-phenylpyrirnidine (XI) with II resulted in the formation of ethyl 4-amino-6-(ethoxy-carbonyl)-5,6-dihydro-5-amino-2-phenylthieno[2,3-d]pyrimidine-6-acetate (XIII) which when subjected to hydrolysis gave ethyl 4,5-diamino-2-phenylthieno[2,3-d]pyrimidine-6-acetate isolated as the hydrochloride (XIV). Diazotization of IV with sodium nitrite in acetic acid unexpectedly afforded diethyl 5-(acetyloxy)-6,7-dihydro-6-hydroxy-2-(methylthio)-5H-thio-pyrano[2,3-d]pyrimidine-6,7-diearboxylate (XV). Several structural ambiguities were resolved by ir and pmr spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号