首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions between CoO, ZnCl2 (or ZnBr2), and molten citric acid (Hcit) led to the formation of two 3d‐3d heterometallic coordination frameworks: [ZnCo(Hcit)Cl] ( 1 ) and [ZnCo(Hcit)Br] ( 2 ). X‐ray structure analyses show that both compounds 1 and 2 crystallize in the monoclinic space group P21/n [ 1 : a = 5.8699(5) Å, b = 17.7963(13) Å, c = 9.2152(8) Å, β = 106.806(4) °, Z = 4, V = 921.53(13) Å3; 2 : a = 5.909(3) Å, b = 17.798(8) Å, c = 9.302(5) Å, β = 106.374(7) °, Z = 4, V = 938.6(8) Å3]. The structures of the two compounds are almost the same except for the terminal halogen ligand. Both of them are 3D frameworks based on citric acid bridging ligands and a 1D backbone chain built of corner‐shared {CoO6} and {ZnO3Cl} polyhedra. Photoluminescence and thermal stabilities of the compounds were studied.  相似文献   

2.
《Solid State Sciences》2004,6(7):697-703
Gallium pentaphosphates have been synthesized for the first time. These compounds, RbGa2P5O16 and CsGa2P5O16, are isotypic to the cesium pentaphosphates CsM2P5O16 (M=Fe, V). They crystallize in the noncentrosymmetric Pn space group with a=7.4058(3) Å, b=9.2151(2) Å, c=10.0912(11) Å, β=110.768(8)°, V=643.9(1) Å3 (Z=2) and a=7.462(2) Å, b=9.241(3) Å, c=10.103(2) Å, β=110.731(16)°, V=651.5(3) Å3 (Z=2) for the rubidium and cesium compounds, respectively. The single crystal structure determination shows that the 3D [Ga2P5O16] framework is rather rigid and does not vary significantly whatever M=Fe, V, Ga and A=Rb, Cs. The strongly distorted character of the pentaphosphate unit may be at the origin of strains along the P5O16 group, which explains the difficulty to stabilize pentaphosphates.  相似文献   

3.
Reactions of [NH4]2[MS4](M = Mo,W), CuX(X = Br, I) and PPh3 in the solid state produced four mixed-metal sulfur containing clusters {Cu3MS3X}(PPh3)3S(M = Mo, W; X = Br, I), two of which (1: M = Mo, X = I; 2: M = W, X = Br) were structurally determined. Crystals of 1 and 2 are triclinic, space group P1 (1: a = 11.895(3), b = 13.107(1), c = 20.473(2)Å, α = 74.95(6), β = 84.87(8), γ = 64.27(7)°, Z=2, V=2776.1 Å3, Rw = 0.064 for 6443 observed reflections. 2: a = 11.876 (1), b = 13.065 (2), c = 20.325(2)Å, α = 74.95(1), β= 85.39(1), γ = 64.09(1)°, Z = 2, V = 2737.3Å3, Rw = 0.055 for ·5303 observed reflections). The results of the structure determination showed that the central units of the two cubane-like cluster compounds are composed of four metal atoms and four non-metal atoms situated at alternate corners. The differences of cubane-like cluster compounds obtained from solid state reactions and from solution reactions are discussed.  相似文献   

4.
《Solid State Sciences》2004,6(1):109-116
The exploration of the CsReSBr system, in order to identify new phases based on octahedral cluster anions, has produced single crystals of Cs4Re6S8Br6 (1) (trigonal, space group P-6c2, a=9.7825 (3) Å, c=18.7843 (5) Å, V=1556.77 (1) Å3, Z=2, density=5.09 g cm−3, μ=36.07 mm−1) and Cs2Re6S8Br4 (2) (monoclinic, space group P21/n, a=6.3664 (1) Å, b=18.4483 (4) Å, c=9.3094 (2) Å, β=104.2618 (8)°, V=1059.69 (4) Å3, Z=2, density=6.14 g cm−3, μ=45.83 mm−1). These two compounds have been obtained by high-temperature solid state route. Their structures have been solved and refined from single crystal X-ray diffraction data. The structure of Cs4Re6S8Br6 presents isolated anionic cluster units inscribed in a (Cs+)12 cuboctahedron and the one of Cs2Re6S8Br4 exhibits ReSi-a,a-iRe inter-unit bridges. The framework of the latter presents then a strongly 1-D character.  相似文献   

5.
Two new inorganic–organic vanadate hybrid compounds [Mn(Hbbi)2(V4O12)] ( 1 ) and [Cd(Hbbi)2(V4O12)] ( 2 ) (bbi = 1,1’‐(1,4‐butanediyl)bis(imidazole)) were hydrothermally synthesized and characterized by elemental analyses, IR spectroscopy, TG and single‐crystal X‐ray diffraction. The two compounds crystallize in monoclinic system, P21/c space group with a = 8.556(5) Å, b = 10.761(5) Å, c = 16.917(5) Å, β = 93.032(5) o, V = 1555.4(12) Å3, Z = 2, R = 0.0390 for 1 and a = 8.657(5) Å, b = 10.743 (5) Å, c = 16.864 (5) Å, β = 93.81(5)o, V = 1564.9 (12) Å3, Z = 2, R = 0.0717 for 2 . Single‐crystal X‐ray diffraction analysis reveals that the two compounds are isostructural and both consist of one‐dimensional (1D) chains, which are constructed from vanadate anion clusters and [M(Hbbi)2]4+ cation groups [M = MnII ( 1 ), CdII ( 2 )]. Moreover, the polymeric chains are ultimately packed into a three‐dimensional (3D) supramolecular framework through C–H ··· O and N–H ··· O hydrogen bonding interactions.  相似文献   

6.
The new quaternary thiogermanates, ATaGeS5 (A = K, Rb, Cs) were prepared with the use of halide fluxes and the crystal structures of the compounds were determined by single‐crystal X‐ray diffraction methods. The compounds are isostructural and crystallize in space group P\bar{1} of the triclinic system with two formula units in a cell of dimensions: a = 6.937(1) Å, b = 6.950(2) Å, c = 8.844(3) Å, α = 71.07(2)°, β = 78.56(2)°, γ = 75.75(2)°, V = 387.6(2) Å3 for KTaGeS5; a = 6.996(3) Å, b = 7.033(3) Å, c = 8.985(4) Å, α = 70.33(3)°, β = 78.12(4)°, γ = 75.63(4)°, V = 399.6(3) Å3 for RbTaGeS5; a = 7.012(4) Å, b = 7.202(3) Å, c = 9.267(5) Å, α = 68.55(3)°, β = 77.27(4)°, γ = 74.75(4)°, V = 416.2(4) Å3 for CsTaGeS5. The structures of ATaGeS5 (A = K, Rb, Cs) are comprised of anionic infinite two‐dimensional {}_\infty^2 [TaGeS5] layers separated from one another by alkali metal cations (A+). Each layer is made up of tantalum centered sulfur octahedra and pairs of edge‐sharing germanium centered sulfur tetrahedra. The classical charge valence of these compounds should be represented by [A+][(Ta5+)(Ge4+)(S2–)5]. UV/Vis diffuse reflectance measurements indicate that they are semiconductors with optical bandgaps of ca. 2.0 eV.  相似文献   

7.
The reaction of W6Br12 with AgBr in evacuated silica tubes (temperature gradient 925 K/915 K) yielded brownish black octahedra of Ag[W6Br14] ( I ) and yellowish green platelets of Ag2[W6Br14] ( II ) both in the low temperature zone. ( I ) crystallizes cubically (Pn3 (no. 201); a = 13.355 Å, Z = 4) and ( II ) monoclinically (P21/c (no. 14); a = 9.384 Å, b = 15.383 Å, c = 9.522 Å, β = 117.34°, Z = 2). Both crystal structures contain isolated cluster anions, namely [(W6Bri8)Bra6]1– and [(W6Bri8)Bra6])]2–, respectively, with the mean distances and angles: ( I ) d(W–W) = 2.648 Å, d(W–Bri) = 2.617 Å, d(W–Bra) = 2.575 Å, d(Bri…Bri) = 3.700 Å, d(Bri…Bra) = 3.692 Å, ∠W–Bri–W = 60.78°. ( II ) d(W–W) = 2.633 Å, d(W–Bri) = 2.624 Å, d(W–Bra) = 2.613 Å, d(Bri…Bri) = 3.710 Å, d(Bri…Bra) = 3.707 Å, ∠W–Bri–W = 60.23°. The Ag+ cations are trigonal antiprismatically coordinated in ( I ) with d(Ag–Br) = 2.855 Å, but distorted trigonally planar in ( II ) with d(Ag–Br) = 2.588–2.672 Å. The structural details of hitherto known compounds with [W6Br14] anions will be discussed.  相似文献   

8.
Two new copper(II) complexes [Cu(MEA)2(N3)2] (1) and [Cu(BMP)2] (2), where MEA and BMP are 2-morpholin-4-ylethylamine and 2,4-dibromo-6-[(2-morpholin-4-ylethylimino)methyl]phenolate respectively, are prepared and characterized using elemental analysis, FT-IR spectroscopy, and X-ray single crystal diffraction. The crystal of 1 belongs to the triclinic system, space group P-1, with a = 6.661(2) Å, b = 8.440(3) Å, c = 8.913(3) Å, α = 102.032(3)°, β = 107.899(2)°, γ = 98.242(3)°, V = 454.6(3) Å3, Z = 1, D c = 1.490 g/cm3, R 1 = 0.0226, and wR 2 = 0.0564. The crystal of 2 belongs to the monoclinic system, space group P21/c, with α = 7.0707(7) Å, b = 15.438(1) Å, c = 14.227(1) Å, β = 96.659(2)°, V = 1542.5(3) Å3, Z = 2, D c = 1.821 g/cm3, R 1 = 0.0437, and wR 2 = 0.1041. In each complex, the Cu atom is in a square planar coordination. The molecules of 1 are linked through intermolecular N-H...N and N-H...O hydrogen bonds to form layers parallel to the ab plane. The molecules of 2 are linked through intermolecular C-H...Br hydrogen bonds to form a 3D network.  相似文献   

9.
Brown crystals of [NMe4]4[(Se4Br10)2(Se2Br2)2] ( 1 ) were obtained from the reaction of selenium and bromine in acetonitrile in the presence of tetramethylammonium bromide. The crystal structure of 1 was determined by X‐ray diffraction and refined to R = 0.0297 for 8401 reflections. The crystals are monoclinic, space group P21/c with Z = 4 and a = 12.646(3) Å, b = 16.499(3) Å, c = 16.844(3) Å, β = 101.70(3)° (123 K). In the solid‐state structure, the anion of 1 is built up of two [Se4Br10]2– ions. Each shows a triangular arrangement of three planar SeBr4 units sharing a common edge through two μ3‐bridging bromine atoms, and one SeBr2 molecule, which is linked to the SeII atoms of two SeBr4 units; between the Se4Br102– ions a dimerized Se2Br2 molecule (Se4Br4) is situated and one SeI atom of each Se2Br2 molecule has two weak contacts [3.3514(14) Å and 3.3952(11) Å] to two bromine atoms of one SeBr4 unit. Four SeI atoms of a dimerized Se2Br2 molecule are in a almost regular planar tetraangular arrangement. Contacts between the SeII atom of the SeBr2 molecule and the SeII atoms of two SeBr4 units are 3.035(1) Å and 3.115(1) Å, and can be interpreted as donor‐acceptor type bonds with the SeII atoms of SeBr4 units as donors and the SeBr2 molecule as acceptor. The terminal SeII–Br and μ3‐Br–SeII bond lengths are in the ranges 2.3376(10) to 2.4384(8) Å and 2.8036(9) to 3.3183(13) Å, respectively. The bond lengths in the dimerized Se2Br2 molecule are: SeI–SeI = 2.2945(8) Å and 3.1398(12), SeI–Br = 2.3659(11) and 2.3689(10) Å.  相似文献   

10.
Crystals of the zwitterionic copper(I) π‐complex [(HC≡CCH2NH3)Cu2Br3] have been synthesized by interaction of CuBr with [HC≡CCH2NH3]Br in aqueous solution (pH < 1) and X‐ray studied. The crystals are monoclinic: space group P21/n, a = 6.722(4), b = 12.818(8), c = 9.907(3) Å, β = 100.25(4)°, V = 840.0(8) Å3, Z = 4, R = 0.0592 for 3015 reflections. The crystal structure of the π‐complex contains isolated [(HC≡CCH2NH3)+(Cu2Br3)?]2 units which are incorporated into a framework by strong hydrogen N–H···Br and C≡C–H···Br bonds. The length of π‐coordinated propargylammonium C≡C bond is equal 1.216(8) Å and Cu(I)–(C≡C) distance equals 1.958(5) Å.  相似文献   

11.
The phase diagram of the system [Ph4P]Br/BiBr3 was investigated with the aid of DSC, TG and temperature dependent X‐ray powder diffraction measurements. By varying the reaction conditions, stoichiometry and crystallisation conditions of the reaction between BiBr3 and [Ph4P]Br four polynuclear bromobismuthates are formed. We report here the crystal structure of the solvation product [Ph4P]3[Bi2Br9] · CH3COCH3, which crystallises with monoclinic symmetry in the S. G. P21/n No. 14, a = 12.341(1), b = 32.005(3), c = 19.929(3) Å, β = 99.75(2)°, V = 7758(7) Å3, Z = 4 and the crystal structures of two modifications of the compound [Ph4P]4[Bi6Br22]. The α‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.507(4) Å, b = 14.434(4) Å, c = 17.709(5) Å, α = 81.34(2)°, β = 72.42(2)°, γ = 72.53(2)°, V = 3132.7(1) Å3, Z = 2. The high‐temperature β‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.893(4) Å, b = 14.267(3) Å, c = 16.580(3), α = 100.13(2)°, β = 96.56(2)°, γ = 110.01(2)°, V = 2985.5(1) Å3, Z = 2. Lattice parameters of [Ph4P]4[Bi8Br28] are also given. The thermal behaviour of the compounds and in addition the vibrational spectra of [Ph4P]3[Bi2Br9] · CH3COCH3 are presented and discussed.  相似文献   

12.
Two novel borophosphates, MII(C4H12N2)[B2P3O12(OH)] (MII = Co, Zn), exhibiting open frameworks, have been synthesized by hydrothermal reactions (T = 165 °C). The crystal structures of the isotypic compounds have been determined both at 293 K (orthorhombic, Ima2 (no. 46), Z = 4; MII = Co: a = 12.4635(4) Å, b = 9.4021(4) Å, c = 11.4513(5) Å, V = 1341.90 Å3, R1 = 0.0202, wR2 = 0.0452, 2225 observed reflections with I > 2σ(I); MII = Zn: a = 12.4110(9) Å, b = 9.4550(5) Å, c = 11.4592(4) Å, V = 1344.69 Å3, R1 = 0.0621, wR2 = 0.0926, 1497 observed reflections with I > 2σ(I)). Distorted CoO6‐octahedra and ZnO5‐square‐pyramids, respectively, share common oxygen‐corners with BO4‐, PO4‐ and (HO)PO3‐tetrahedra. The tetrahedral groups are linked via common corners to form infinite loop‐branched borophosphate chains [B2P3O12(OH)4–]. The open framework of MII‐coordination polyhedra and tetrahedral borophosphate chains contains a three‐dimensional system of interconnected structural channels running along [100], [011] and [011], respectively, which are occupied by di‐protonated piperazinium ions.  相似文献   

13.
Two new cadmium borates, [Cd(en)3][B5O6(OH)4]2 · 2H2O (en = ethylenediamine) ( 1 ) and [Cd(DETA)2][B5O6(OH)4]2 (DETA = diethylenetriamine) ( 2 ) were synthesized in a novel procedure under mild solvothermal conditions and characterized by single‐crystal X‐ray diffraction, IR spectroscopy, elemental analysis, and TG–DTA. The compound 1 crystallizes in monoclinic system, space group P21/c (No. 14) with a = 8.526(2) Å, b = 23.127(6) Å, c = 15.438(4) Å, β = 94.320(3) °, V = 3035.5(13) Å3, Z = 4. Compound 2 is triclinic, space group P$\bar{1}$ (No. 2), a = 8.632(5) Å, b = 9.418(6) Å, c = 27.856(18) Å, α = 95.415(8) °, β = 91.891(7) °, γ = 93.563 (7) °, V = 2248(2) Å3, Z = 3. The anionic units of the both structures, [B5O6(OH)4] are linked by hydrogen bonds to form a three‐dimensional framework with large channels, in which the templating cadmium complex cations are located. The thermal decomposition performance of compound 1 requires three steps, whereas only two steps are needed for compound 2 , which all lead to amorphous phases. These processes are well explained considering the structure and the change in the Cd2+ coordination during heating.  相似文献   

14.
From hydrothermal synthesis needle‐shaped crystals of [Ca3(C6H5O7)2(H2O)2] · 2H2O were obtained. The crystal structure was determined by single‐crystal X‐ray experiments and confirmed by powder data (P$\bar{1}$ (no. 2) a = 5.9466(4), b = 10.2247(8), c = 16.6496(13) Å, α = 72.213(7)°, β = 79.718(7)°, γ = 89.791(6)°, V = 947.06(13) Å3, Z = 2, R1 = 0.0426, wR2 = 0.1037). The structure was obtained from pseudo merohedrically polysynthetic twinned crystals using a combined data collection approach and refinement processes. The observed three‐dimensional network is dominated by eightfold coordinated Ca2+ cations linked by citrate anions and hydrogen bonds between two non‐coordinating crystal water molecules and two coordinating water molecules.  相似文献   

15.
The reaction of methylammonium halides and cobalt halides yielded the organic‐inorganic hybrid compounds of general formula (CH3NH3)2CoX4. By varying the different halides, we were able to synthesize the whole row from Cl to I as well as some mixed halides compounds and to determinate the crystal structures. (CH3NH3)2CoX4 (X = Cl, Br, Cl0.5Br0.5, Br0.5I0.5) crystallize isotypic to (CH3NH3)2HgCl4 in space group P21/c with Z = 4 [X = Cl: a = 7.6483(9), b = 12.6885(18), c = 10.8752(12) Å, β = 96.639(9)°; X = Cl0.5Br0.5: a = 7.8271(9), b = 12.9543(9), c = 11.1007(11) Å, β = 96.320(8)°; X = Br: a = 7.9782(2), b = 13.1673(2), c = 11.2602(2) Å, β = 96.3260(10)° and X = Br0.5I0.5: a = 8.2435(12), b = 13.645(2), c = 11.5856(18) Å, β = 95.54(2)°]. The mixed halides show a statistic distribution in both cases. In (CH3NH3)2CoCl2I2 an ordered variant is realized representing a new structure type [C2/m, Z = 4, a = 18.808(4), b = 7.3604(7), c = 10.4109(17) Å, β = 120.364(13)°]. (CH3NH3)2CoI4 crystallizes again isotypic to the respective mercury compound [(CH3NH3)2HgCl4] [Pbca, Z = 8, a = 10.9265(5), b = 12.1552(5), c = 20.9588(9) Å]. All structures are build up by inorganic tetrahedral [CoX4]2– anions and organic (CH3NH4)+ cations. Additionally the Raman spectra as well as the optical reflectance spectra are discussed.  相似文献   

16.
The complexes [Cu(dpp)Br2] ( 1 ) and [Cu(dpp)2][CuBr2] ( 2 ) (dpp = 2,9‐diphenyl‐1,10‐phenanthroline) were synthesized and characterized by single‐crystal X‐ray diffraction methods. Reaction of copper(II) bromide with the dpp ligand in dichloromethane at room temperature afforded 1 , which is a rare example of non‐square planar four‐coordinate copper(II) complexes. Complex 1 crystallizes in the monoclinic space group C2/c with a = 15.352(3), b = 13.192(3), c = 11.358(2) Å, β = 120.61(3)°, V = 1979.6(7) Å3, Z = 4, Dcalc = 1.865 g cm?3. The coordination geometry about the copper center is distorted about halfway between square planar and tetrahedral. The Cu‐N distance is 2.032(2) Å and the Cu‐Br distance 2.3521(5) Å. Heating a CH2Cl2 or acetone solution of 1 resulted in complex 2 , which consists of a slightly distorted tetrahedral [Cu(dpp)2]+ cation and a linear two‐coordinate [CuBr2]? anion. 2 crystallizes in the triclinic space group with a = 10.445(2), b = 11.009(2), c = 18.458(4) Å, α = 104.72(3), β = 94.71(3), γ = 103.50(3)°, V = 1973.3(7) Å3, Z = 2, Dcalc = 1.602 g cm?3. The four Cu(1)‐N distances are between 2.042(3) and 2.067(3) Å, the distance of Cu(2)‐Br(1) 2.2268(8) Å, and the disordered Cu(3)‐Br(2) distances are 2.139(7) and 2.237(4) Å, respectively. Complex 2 could also be prepared by directly reacting CuBr with dpp in CH2Cl2.  相似文献   

17.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

18.
Abstract

The triboluminescence spectra and crystal structures of 1,2-dimethylpyridinium tetrakis(2-thenoyltrifluoroacetonato)samarium(III) (1) and 1,2,6-trimethylpyridinium tetrakis(2-thenoyltrifluoroacetonato)samarium(III) (2) were determined. The triboluminescent maximums are similar to those of the photoluminescence. Complex 1 is centrosymmetric and the triboluminescent emission may correlate with the disorder of all S atoms, all CF3 groups and the cation. The triboluminescent activity of complex 2 may correlate with its noncentrosymmetric space group. Complex 1 crystallizes in the monoclinic space group P21/a with cell parameters a = 19.874(2) Å, b = 22.922(2)Å, c = 21.188(1)Å, β = 108.126(6)°, V = 9173(1)Å3; Z = 8; R = 0.0758 and Rw = 0.1315. Complex 2 crystallizes in the monoclinic space group Pn with cell parameters a = 11.2808(6)Å, b = 11.0199(5)Å c c = 18.4336(9)Å, β = 108.126(6)° V = 2285.28(19)Å3; Z = 4; R = 0.0347 and Rw = 0.0900. All the structures were refined by full-matrix least squares methods.  相似文献   

19.
A new 3-D organic–inorganic hybrid phosphomolybdate, [Ag(bipy)]4(H2P2Mo5O23) · 3H2O (1) (bipy = 4,4′-bipyridine) has been hydrothermally synthesized and characterized by elemental analyses, IR, TG, and fluorescent properties. Compound 1 crystallizes in the monoclinic space group C2/c with a = 23.830(5), b = 21.030(4), c = 24.501(5) Å, β = 110.38(3)°, V = 11510(4) Å3, Z = 8, and R 1 (wR 2) = 0.0507 (0.1210). It contains unique 3-D metal organic frameworks based on silver-complex fragments and hexa-connected P2Mo5 clusters via covalent bonds and represents the highest connection numbers of P2Mo5 clusters to date.  相似文献   

20.
The chiral dinuclear heterometallic complexes [Cu(dach)2][Pt(CN)4]?·?2H2O (1), [Ni(dach)3][Pt(CN)4]?·?2DMF?·?H2O (2), and [Pd(dach)4][Pt(CN)4]?·?H2O (3) (dach?=?1R,2R-cyclohexanediamine) have been prepared and characterized by X-ray diffraction analysis. Crystal data: 1, monoclinic, P21, a?=?8.108(3), b?=?15.552(6), c?=?9.914(4)?Å, β?=?110.931(6)°, V?=?1167.6(8)?Å3, Z?=?2, R 1?=?0.0420, wR 2?=?0.1122; 2, monoclinic, P21, a?=?13.264(11), b?=?9.285(7), c?=?16.211(13)?Å, β?=?111.640(9)°, V?=?1856(3)?Å3, Z?=?2, R 1?=?0.0276, wR 2?=?0.0698; 3, monoclinic, P21, a?=?6.887(2), b?=?12.809(4), c?=?12.975(4)?Å, β?=?94.865(4)°, V?=?1140.6(6)?Å3, Z?=?2, R 1?=?0.057, wR 2?=?0.156. In complex 1, the Pt and Cu atoms are linked by a CN bridge that presents a very bent C=N–Cu angle [136.8(8)°].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号