首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In this paper, a novel colorimetric biosensor for Hg2+ and DNA molecules is presented based on Hg2+ stimulated oxidase-like activity of bovine serum albumin protected silver clusters (BSA-Ag NCs). Under mild conditions, Hg2+ activated BSA-Ag NCs to show high catalytic activity toward the oxidation of 3,3′,5, 5′-tetramethylbenzidine (TMB) using ambient dissolved oxygen as an oxidant. The oxidase-like activity of BSA-Ag NCs was “switched-on” selectively in the presence of Hg2+, which permitted a novel and facile colorimetric sensor for Hg2+. As low as 25 nmol L−1 Hg2+ could be detected with a linear range from 80 nmol L−1 to 50 mmol L−1. In addition, the sensing strategy was also employed to detect DNA molecules. Hg2+ is known to bind very strongly and specifically with two DNA thymine bases (T) to form thymine–Hg2+–thymine (T–Hg2+–T) base pairs. The hairpin-structure was disrupted and Hg2+ ions were released after hybridization with the DNA target. By coupling the Hg2+ switched-on the oxidase-mimicking activity of BSA-Ag NCs, we developed a novel label-free strategy for facile and fast colorimetric detection of DNA molecules. More important, target DNA can be detected as low as 10 nmol L−1 with a linear range from 30 to 225 nmol L−1. Compared with other methods, this method presents several advantages such as the independence of hydrogen peroxide, high sensitivity and good selectivity, avoiding any modification or immobilization of DNA, which holds a great potential of metal NCs for clinical application in biosensing and biotechnology.  相似文献   

2.
Water-soluble luminescent CdSe quantum dots surface-modified with triethanolamine (TEA-CdSe-QDs) were prepared with high stability. The fluorescence of the TEA-CdSe-QDs was greatly quenched only when Hg2+ and I coexisted in the solution, whereas addition of either Hg2+ or I individually has no noticeable effect on the fluorescence emission. Such a unique quenching effect could be used for reciprocal recognition of mercury (II) ions and/or iodide anions in aqueous solution with rather high selectivity and sensitivity. The detection limits of Hg2+ or I ion were 1.9 × 10−7 mol L-1 or 2.8 × 10−7 mol L−1, respectively. The adequate experiments showed that iodine (I) anions could bridge between TEA-CdSe-QDs and Hg2+ to form a stable complex (QDs-I-Hg2+) and the following effective electron transfer from the QDs to the Hg2+ could be responsible for the fluorescence quenching of QDs.  相似文献   

3.
A new fluorescein-based chemodosimeter (II) for Hg2+ ion was designed and synthesized, and it displayed excellent selective and sensitive toward Hg2+ ion over other commonly metal ions in aqueous media. II was a colorless, non-fluorescent compound. Upon addition of Hg2+ to the solution of II, the thiosemicarbazide moiety of II would undergo an irreversible desulfurization reaction to form its corresponding oxadiazole (IV), a colorful and fluorescent product. During this process, the spirocyclic ring of II was opened, causing instantaneous development of visible color and strong fluorescence emission in the range of 500-600 nm. Based on the above mechanism, a fluorogenic Hg2+-selective chemodosimeter was developed. The fluorescence increase is linearly with Hg2+ concentration up to 1.0 μmol L−1 with a detection limit of 8.5 × 10−10 mol L−1 (3σ). Compared with the rhodamine-type chemodosimeter, II is more stable in aqueous media and exhibits higher sensitivity toward Hg2+. The findings suggest that II will serve as a practical chemodosimeter for rapid detection of Hg2+ concentrations in realistic media.  相似文献   

4.
Yang F  Ma Q  Yu W  Su X 《Talanta》2011,84(2):411-415
A novel direct quantificational method through naked-eye colorimetric analysis of Hg2+ was constructed based on different degree of the fluorescence quenching of bi-color quantum dots (QDs) multilayer films (2-QDMF). The functional multilayer films were assembled by layer-by-layer (LBL) deposition of oppositely charged CdTe QDs and poly(dimethyldiallylemmonium chloride) (PDDA). Then the outermost layer of 2-QDMF was cross-linked to bovine serum albumin (BSA), polyethylene glycol (PEG) or glutathione (GSH). It was found that when BSA modified quartz slides were immersed into solutions containing Hg2+ and Cu2+ respectively, the 2-QDMF can be quenched by Hg2+, but not by Cu2+. Under the optimization conditions, the quenched photoluminescence (PL) intensities of multilayer films were almost linearly proportional to the concentration of Hg2+ in the range of 1.0 × 10−8 to 1.0 × 10−6 mol L−1 and the detection limit was 4.5 × 10−9 mol L−1. The proposed method is intuitional and convenient, which can be applied to the determination of trace Hg2+ in the artificial water sample with satisfactory results.  相似文献   

5.
An optical sensor for mercury ion (Hg2+), based on quenching the fluorescence of the sensing reagent porphyrin immobilized in plasticized poly(vinyl chloride) (PVC) membrane, has been developed. The responses to mercury ion were compared for the sensors modified with three porphyrin compounds including 5,10,15,20-tetraphenylporphyrin (TPP), tetra(p-dimethylaminophenyl)porphyrin (TDMAPP) and tetra(N-phenylpyrazole) porphyrin (TPPP). Among them, TDMAPP showed the most remarkable response to Hg2+. The drastic decrease of the TDMAPP fluorescence intensity was attributed to the formation of a complex between TDMAPP and Hg2+, which has been utilized as the fabrication basis of a Hg2+-sensitive fluorescence sensor. The analytical performance characteristics of the TDMAPP modified sensor was investigated. The response mechanism, especially involving the response difference of three porphyrin compounds, was discussed in detail. The sensor can be applied to the quantification of Hg2+ with a linear range covering from 4.0 × 10−8 mol L−1 to 4.0 × 10−6 mol L−1. The limit of detection was 8.0 × 10−9 mol L−1. The sensor exhibited excellent reproducibility, reversibility and selectivity. Also, the TDMAPP-based sensor was successfully used for the determination of Hg2+ in environmental water samples.  相似文献   

6.
Duan J  Jiang X  Ni S  Yang M  Zhan J 《Talanta》2011,85(4):1738-1743
This paper described an investigation of a novel eco-friendly fluorescence sensor for Hg2+ ions based on N-acetyl-l-cysteine (NAC)-capped ZnS quantum dots (QDs) in aqueous solution. By using safe and low-cost materials, ZnS QDs modified by NAC were easily synthesized in aqueous medium via a one-step method. The quantitative detection of Hg2+ ions was developed based on fluorescence quenching of ZnS QDs with high sensitivity and selectivity. Under optimal conditions, its response was linearly proportional to the concentration of Hg2+ ions in a range from 0 to 2.4 × 10−6 mol L−1 with a detection limit of 5.0 × 10−9 mol L−1. Most of common physiologically relevant cations and anions did not interfere with the detection of Hg2+. The proposed method was applied to the trace determination of Hg2+ ions in water samples. The possible quenching mechanism was also examined by fluorescence and UV-vis absorption spectra.  相似文献   

7.
An efficient fluorescent chemosensor for Hg2+ ion, based on 5-(dimethylamino)-N-(2-mercaptophenyl)naphthalene-1-sulfonamide, has been developed. It exhibits Hg2+-selective on–off fluorescence quenching behavior via twisted intramolecular charge transfer (TICT) mechanism, which is rationalized by time dependent density functional theory (TD-DFT) calculations. The system exhibits visible color change from colorless to gray upon Hg2+ binding with very high selectivity and sensitivity (as low as 5.0 × 10−10 mol L−1) over other metal ions such as K+, Na+, Ag+, Mn2+, Ca2+, Ba2+, Fe2+, Zn2+, Pb2+, Cu2+, Sn2+, Cd2+, Ni2+ and Co2+. The present sensing system is also successfully applied for the detection of Hg2+ ion in real samples.  相似文献   

8.
We have developed a novel method for the determination of iodate based on the carboxymethyl cellulose-capped CdS quantum dots (QDs). Factors affecting the iodate detection were investigated, and the optimum conditions were determined. Under the optimum conditions, the relative fluorescence intensity of CdS quantum dots was linearly proportional to IO3 over a concentration range from 1.0 × 10−8 to 1.0 × 10−5 mol L−1 with a correlation coefficient of 0.9987 and a detection limit of 6.0 nmol L−1. Iodide, being oxidized by bromine to form iodate, was detected indirectly. The method was successfully applied to the determination of iodate and total amount of iodine in table salt samples. The related mechanism was also discussed.  相似文献   

9.
Honglei Mu 《Tetrahedron letters》2007,48(31):5525-5529
A novel two-channel metal ion sensor has been synthesized from macrocyclic dioxotetraamine and 1,8-naphthalimide derivative. The metal ion-selective signaling behaviors of the sensor were investigated. The sensor presented the selective coloration for Cu2+ and Hg2+ that can be detected by the naked-eye, respectively. Besides, the addition of Cu2+ and Hg2+ quenched the fluorescence of 1 obviously and the detection limit was found to be 3 × 10−7 M for Cu2+ and 7 × 10−7 M for Hg2+. This sensor can be utilized for the visual and spectroscopic detection of Cu2+ or Hg2+ in the presence of the other competing metal ions.  相似文献   

10.
Herein, an innovative and simple strategy for synthesizing high fluorescent Cu nanoclusters was successfully established while l-cysteine played a role as the stabilizer. Meaningfully, the current Cu nanoclusters together with a quantum yield of 14.3% were prepared in aqueous solution, indicating their extensive applications. Subsequently, the possible fluorescence mechanism was elucidated by fluorescence, UV–vis, HR-TEM, FTIR, XPS, and MS. Additionally, the CuNCs were employed for assaying Hg2+ on the basis of the interactions between Hg2+ and l-cysteine; thus facilitating the quenching of their fluorescence. The proposed analytical strategy permitted detections of Hg2+ in a linear range of 1.0 × 10−7 mol L−1 × 10−3 mol L−1, with a detection limit of 2.4 × 10−8 mol L−1 at a signal-to-noise ratio of 3. Significantly, this CuNCs described here were further applied for coding and fluorescent staining, suggesting may broaden avenues toward diverse applications.  相似文献   

11.
A new surface based on poly(vinylferrocenium) (PVF+)-modified platinum electrode was developed for determination of Hg2+ ions in aqueous solutions. The polymer was electrodeposited on platinum electrode by constant potential electrolysis as PVF+ClO4. Cl ions were then attached to the polymer matrix by anion exchange and the modified electrode was dipped into Hg2+ solution. Hg2+ was preconcentrated at the polymer matrix by adsorption and also complexation reaction with Cl. Detection of Hg2+ was carried out by differential pulse anodic stripping voltammetry (DPASV) after reduction of Hg2+. Mercury ions as low as 5 × 10−10 M could be detected with the prepared electrode and the relative standard deviation was calculated as 6.35% at 1 × 10−6 M concentration (n = 6). Interferences of Ag+, Pb2+ and Fe3+ ions were also studied at two different concentration ratios with respect to Hg2+. The developed electrode was applied to the determination of Hg2+ in water samples.  相似文献   

12.
A fluorescent probe 1 for Hg2+ based on a rhodamine-coumarin conjugate was designed and synthesized. Probe 1 exhibits high sensitivity and selectivity for sensing Hg2+, and about a 24-fold increase in fluorescence emission intensity is observed upon binding excess Hg2+ in 50% water/ethanol buffered at pH 7.24. The fluorescence response to Hg2+ is attributed to the 1:1 complex formation between probe 1 and Hg2+, which has been utilized as the basis for the selective detection of Hg2+. Besides, probe 1 was also found to show a reversible dual chromo- and fluorogenic response toward Hg2+ likely due to the chelation-induced ring opening of rhodamine spirolactam. The analytical performance characteristics of the proposed Hg2+-sensitive probe were investigated. The linear response range covers a concentration range of Hg2+ from 8.0 × 10−8 to 1.0 × 10−5 mol L−1 and the detection limit is 4.0 × 10−8 mol L−1. The determination of Hg2+ in both tap and river water samples displays satisfactory results.  相似文献   

13.
An analytical method using an optical probe in a photoelectrochemical cell for the sensitive and selective determination of aqueous Hg2+ is presented. A previously synthesized Hg2+ selective chemosensor, proven to be Hg2+ sensitive up to 2 μg L−1, has been immobilized onto indium tin oxide (ITO) electrodes in a composite form with polyaniline. The coated ITO electrode was placed in a photoelectrochemical cell under closed circuit conditions in which the optical recognition of the chemosensor was converted to a measurable signal. A composite of the fluorescent chemosensor, Rhodamine 6G derivative (RS), and polyaniline (PANI) was immobilized on ITO glass plates and subjected to photovoltage measurements in the absence and presence of Hg2+. The optical responses of the coated electrode were used to determine the sensitivity and selectivity of the immobilized sensor to Hg2+ in the presence of background ions. The optical response of the PANI-dye coated electrode increased linearly with increasing Hg2+ concentration in the range 10-150 μg L−1, with a detection limit of 6 μg L−1.  相似文献   

14.
15.
A new resonance light scattering (RLS) spectrometric method for mercury ions (Hg2+) in aqueous solutions with sulfur ion (S2−) modified gold nanoparticles (Au-NPs-S) has been developed in this contribution. It was found that S2− at the surface of Au-NPs resulting from the surface modification can interact with Hg2+ to form very stable S-Hg-S bonds when Hg2+ concentration is lower than that of S2−, resulting in the aggregation of Au-NPs-S and causing enhanced RLS signals. The enhanced RLS intensities (ΔIRLS) characterized at 392 nm were found to be proportional to the concentration of Hg2+ in the range of 0.025-0.25 μmol L−1 with a detection limit (3σ) of 0.013 μmol L−1. Our results showed that this approach has excellent selectivity for Hg2+ over other substances in aqueous solutions.  相似文献   

16.
A new fluorescent chemosensor for Hg2+ based on a dansyl amide-armed calix[4]-aza-crown was reported. It exhibits high sensitivity and selectivity toward Hg2+ over a wide range of metal ions in MeCN-H2O (4:1, v/v). The association constant of the 1:1 complex formation for 2-Hg2+ was calculated to be 1.31 × 105 M−1, and the detection limit for Hg2+ was found to be 4.1 × 10−6 mol L−1.  相似文献   

17.
Naphthalimide derivative (compound 1) containing hydrophilic hexanoic acid group was synthesized and used to recognize Hg2+ in aqueous solution. The fluorescence enhancement of 1 is attributed to the formation of a complex between 1 and Hg2+ by 1:1 complex ratio (K = 2.08 × 105), which has been utilized as the basis of fabrication of the Hg2+-sensitive fluorescent chemosensor. The comparison of this method with some other fluorescence methods for the determination of Hg2+ indicated that the method can be applied in aqueous solution rather than organic solution. The analytical performance characteristics of the proposed Hg2+-sensitive chemosensor were investigated. The chemosensor can be applied to the quantification of Hg2+ with a linear range covering from 2.57 × 10−7 to 9.27 × 10−5 M and a detection limit of 4.93 × 10−8 M. The experiment results show that the response behavior of 1 toward Hg2+ is pH independent in medium condition (pH 4.0–8.0). Most importantly, the fluorescence changes of the chemosensor are remarkably specific for Hg2+ in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the response of the chemosensor toward Hg2+ is fast (response time less than 1 min). In addition, the chemosensor has been used for determination of Hg2+ in hair samples with satisfactory results, which further demonstrates its value of practical applications.  相似文献   

18.
Here, we present a fast and simple hydrogen peroxide assay that is based on time-resolved fluorescence. The emission intensity of a complex consisting of terbium ions (Tb3+) and phthalic acid (PA) in HEPES buffer is quenched in the presence of H2O2 and this quenching is concentration-dependent. The novel PATb assay detects hydrogen peroxide at a pH range from 7.5 to 8.5 and with a detection limit of 150 nmol L−1 at pH 8.5. The total assay time is less than 1 min. The linear range of the assay can be adapted by a pH adjustment of the aqueous buffer and covers a concentration range from 310 nmol L−1 to 2.56 mmol L−1 in total which encompasses four orders of magnitude. The assay is compatible with high concentrations of all 47 tested inorganic and organic compounds. The PATb assay was applied to quantify H2O2 in polluted river water samples. In conclusion, this fast and easy-to-use assay detects H2O2 with high sensitivity and precision.  相似文献   

19.
In this study, a multiplex fluorescence sensor for successive detection of Fe3+, Cu2+ and Hg2+ ions based on “on–off” of fluorescence of a single type of gold nanoclusters (Au NCs) is described. Any of the Fe3+, Cu2+ and Hg2+ ions can cause quenching fluorescence of Au NCs, which established a sensitive sensor for detection of these ions respectively. With the introduction of ethylene diamine tetraacetic acid (EDTA) to the system of Au NCs and metal ions, a restoration of fluorescence may be found with the exception of Hg2+. A highly selective detection of Hg2+ ion is, thus, achieved by masking Fe3+ and Cu2+. On the other hand, the masking of Fe3+ and Cu2+ leads to the enhancement of fluorescence of Au NCs, which in turn provides an approach for successive determination of Fe3+ and Cu2+ based on “on–off” of fluorescence of Au NCs. Moreover, this assay was applied to the successful detection of Fe3+, Cu2+ and Hg2+ in fish, a good linear relationship was found between these metal ions and the degree of quenched fluorescent intensity. The dynamic ranges of Hg2+, Fe3+ and Cu2+ were 1.96 × 10−10–1.01 × 10−9, 1.28 × 10−7–1.27 × 10−6 and 1.2 × 10−7–1.2 × 10−6 M with high sensitivity (the limit of detection of Fe3+ 2.0 × 10−8 M, Cu2+ 1.9 × 10−8 M and Hg2+ 2 × 10−10 M). These results indicate that the assay is suitable for sensitive detection of these metal ions even under the coexistence, which can not only determine all three kinds of metal ions successively but also of detecting any or several kinds of metal ions.  相似文献   

20.
Yu Y  Lin LR  Yang KB  Zhong X  Huang RB  Zheng LS 《Talanta》2006,69(1):103-106
A novel and simple fluorophore, p-dimethylaminobenzaldehyde thiosemicarbazone (DMABTS), was prepared in order to find available fluorescent chemosensor for mercuric ion in aquesous solution. DMABTS emitted fluorescence at 448 nm in aqueous solution and its fluorescence intensity was completely quenched upon interaction with Hg2+ ions, which should be attributed to the 1:1 complex formation between DMABTS and Hg2+. The binding constant of the complex was determined as 7.48 × 106 mol l−1. The linear range of quantitative detection of 0 to 5.77 × 10−6 mol l−1 and the detection limit of 7.7 × 10−7 mol l−1 for Hg2+ in the 6.3 × 10−6 mol l−1 DMABTS aqueous solution were obtained from a calibration curve. The coexistence of several transition metal ions and anions did interfere the fluorometric titration of Hg2+ ion by less than 4% in the emission change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号