首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 546 毫秒
1.
郭浩  钮东方  胡硕真  张新胜 《电化学》2021,27(5):498-507
本文研究了以对-硝基苯基-羟乙基砜为原料在铅板电极上电化学还原制备对-(β-羟乙基砜)苯胺的反应,探究电流密度、通电量、温度和硫酸浓度对电流效率和产率的影响。在最优条件下(电流密度300 A·m-2,理论通电量6.0 F·mol-1,温度70℃,硫酸浓度1.5 mol·L-1),该反应的电流效率达到92.7%,产率达到93.0%。在该最优条件的基础上向电解液中加入质量分数2.0%的硫酸钛可将产率提升至97.8%,硫酸钛的引入间接缓解了反应后期原料扩散速率慢的问题。  相似文献   

2.
郭丹丹  俞红梅  迟军  邵志刚 《电化学》2022,28(9):2214003
开发高效耐用的电极对碱性阴离子交换膜电解水(AEMWEs)制氢至关重要。在这项研究中,我们展示了一种高效且稳定的自支撑NiFe LDHs@Co-OH-CO3/NF纳米棒阵列电极分别用于析氧反应(OER)和AEMWE的阳极。在这项工作中,我们将2D的镍铁层状双金属氢氧化物纳米片(NiFe LDHs)原位生长在1D的碱式碳酸钴纳米线上(Co-OH-CO3/NF),最终得到独特的纳米棒阵列复合结构电极。在三电极体系中,自支撑NiFe LDHs@Co-OH-CO3/NF对OER具有良好的催化活性, 在1 mol·L-1 KOH中, 当电流密度为20 mA·cm-2时,过电位为215 mV。当自支撑NiFe LDHs@Co-OH-CO3/NF作为AEMWE的阳极(70 oC,1 mol·L-1 KOH),在电流密度为0.5 A·cm-2时, 电解电压为1.72 V,并且具有较好的稳定性。进一步的实验表征结果显示了自支撑NiFe LDHs@Co-OH-CO3/NF的优异性能是其具有特殊的形貌结构。这是由于纳米棒阵列电极的三维分层结构可以有效防止纳米片团聚, 从而有利于电子转移,为水分解提供大量的边缘活性位点。  相似文献   

3.
与贵金属铂基电化学氧还原反应(ORR)催化剂相比,廉价的非贵金属催化剂引起了广泛的关注。本文以壳聚糖作为一种富含氮和碳元素的生物质资源,利用碳浴法成功制备了氮掺杂碳原位负载铜纳米颗粒(Cu/N-C)催化剂。纯壳聚糖碳化得到的样品N-C的比表面积为67.5 m2·g-1、平均孔径0.14 nm、平均孔体积8.00 m2·g-1,与之相比,Cu/N-C比表面积可达607.3 m2·g-1、平均孔径为2.5 nm、平均孔体积为0.40 cm3·g-1。通过密度泛函理论(DFT)进行计算表明,Cu(111)/N-C的自由能值低于N-C,更有利于氧还原催化进行。在0.1 mol·L-1 KOH的介质中,Cu/N-C不仅表现出优异的起始和半波电势(分别为0.96 V和0.84 V),而且还表现出了优异的抗甲醇性能和稳定性,并且Cu元素掺杂量达到1.67wt.%。  相似文献   

4.
通过水热法合成了一系列MoS2/GQDs复合材料,并制成碳基复合电极。利用电化学测试手段挑选出最佳电极后用于微生物电解池(MEC)阴极的产氢性能研究。实验结果显示: Na2MoO4、半胱氨酸和GQDs的最佳原料配比为375:600:1,制备出的MoS2/GQDs呈现明显的爆米花样纳米片结构,片层厚度在10 nm左右,当碳纸负载量为1.5 mg·cm-2时,MoS2/GQDs碳纸电极的析氢催化能力最佳。在MEC产氢实验中,MoS2/GQDs阴极MEC的产气量、氢气产率、库仑效率、整体氢气回收率、阴极氢气回收率、电能回收率和整体能量回收率分别为51.15±3.15 mL·cycle-1、0.401±0.032 m3H2·m3d-1、91.16±0.054%、66.64±5.39%、72.44±2.60%、217.26±7.42%和77.37±1.50%,均略高于Pt/C阴极MEC或与之媲美。另外,MoS2/GQDs具有良好的长期稳定性,且价格便宜,有利于实际应用。  相似文献   

5.
水热法是广泛应用于锂离子电池Si@C电极材料的一种制备方法,其反应条件是影响产物最终形貌和性能的重要因素, 采取最佳的反应工艺可以大大提升材料的电化学性能。本研究中, 使用葡萄糖作为碳源, 光伏切割废料硅为硅源, 探究了水热法制备核壳结构Si@C电极材料的最优工艺, 分别研究了温度、 原料浓度、 反应时间和原料比例对产物的形貌、 性能的影响以及相互之间的关系, 并得到最佳反应条件。在该条件下(葡萄糖浓度为0.5 mol·L-1, 硅与葡萄糖重量比为0.3:1, 反应温度190 oC, 反应时间9 h), 得到了包覆完整、 粒径适中的Si@C电极材料(CS190-3), 对以该样品为负极的扣式半电池进行电化学测试, 在655 mA·g-1的电流密度下, 其首圈放电比容量为3369.5 mAh·g-1, 经过500次循环剩余容量为1405.0 mAh·g-1。倍率测试中, 在6550 mA·g-1的电流密度下,其剩余容量为937.1 mAh·g-1,当电流密度恢复至655 mA·g-1时,电池放电比容量仍可恢复至1683.0 mAh·g-1。  相似文献   

6.
以玻碳电极(GCE)为基底电化学聚合制得聚3,4-乙烯二氧噻吩(PEDOT)膜修饰电极,再通过Nafion共固定磷钼酸和石墨烯构建了一种新型的无酶电化学H2O2传感器. 利用扫描电子显微镜(SEM)表征制得的修饰电极,并通过循环伏安法和计时电流法研究了传感器对H2O2的响应性能. 结果表明,在优化条件下,该传感器对H2O2还原具有良好的电催化性能,检测H2O2的线性范围为2.91×10-6 ~ 1.83×10-2 mol•L-1,检出限和灵敏度分别为9.90×10-7 mol•L-1(S/N = 3)和112.5 μA•(mmol•L-1-1. 此外,该传感器还具有良好的重现性和选择性.  相似文献   

7.
孙齐  韩严和  付晓璐 《电化学》2021,27(5):558-569
通过制备Ti/α/β-PbO2、Ti/Ag/β-PbO2这两种含有不同中间层的钛基二氧化铅电极来探究电催化氧化技术快速测定葡萄糖模拟废水中有机物(COD)含量的可行性。为了评估两种电极的各项性能,首先采用扫描电镜(SEM)、X射线衍射(XRD)对电极进行形貌表征,其次进行电化学性能测试包括线性伏安曲线(LSV)、塔菲尔曲线(Tafel)、循环伏安曲线(CV)以及交流阻抗测量分析。结果表明,Ti/α/β-PbO2电极表面晶体结构更加均匀,晶粒尺寸偏小,具有更大的电活性表面积。Ti/α/β-PbO2电极的析氧电位为1.77 V,为·OH的产生提供良好条件。在Tafel、CV测试中,Ti/α/β-PbO2电极的交换电流密度i0及比电容Cp分别为0.0995 A·cm-1、0.004098 F·cm-1均高于Ti/Ag/β-PbO2电极,说明Ti/α/β-PbO2电极的耐腐蚀性以及释放电子的能力优异。最终选用Ti/α/β-PbO2电极为工作电极。Ti/α/β-PbO2电极检测COD的最佳条件为:氧化电位1.30 V、电解时间150 s、电解液浓度0.03 mol·L-1 硝酸钠(NaNO3)。电化学法与比色消解法测定COD的相关系数可达0.9909,同时具有良好的重现性与相关性,COD的检测范围为0 mg·L-1 ~ 500 mg·L-1。在误差允许的范围内可以替代标准的重铬酸钾法,为实现COD的在线快速检测提供参考价值。  相似文献   

8.
林华  吴艺津  李君涛  周尧 《电化学》2021,27(4):366-376
在金属空气电池和燃料电池阴极上的氧还原反应(ORR)对相关电化学能量转换装置的整体性能有重要影响,金属-氮-碳催化剂有望替代传统的商业Pt-C成为新一代ORR电催化剂。本文通过简便的一步热解工艺合成了具有Fe-Nx活性位点和Fe2O3纳米颗粒共存的电催化剂,Fe2O3@Fe-N-C-1000催化剂在0.1 mol·L-1 KOH溶液中表现出良好的ORR活性,半波电位为0.84 V,应用在锌-空气电池中时也具有可以和商业Pt-C媲美的性能,能量密度为88.3 mW·cm-2,同时和Pt-C相比具有更好电化学稳定性,表现出优良的ORR应用潜力。  相似文献   

9.
采用水热法制备水溶性WS2量子点(WS2 QDs)材料,并将该材料进一步用于葡萄糖氧化酶(GOx)的有效固定,构建GOx/W2 QDs/GCE传感界面. 采用透射电镜、紫外-可见光谱和电化学等方法对材料的形貌、GOx的固定化过程,以及传感器的直接电化学和电催化性能进行了表征. 结果表明,WS2 QDs材料能够有效促进GOx与电极之间的直接电子转移. 并且,基于该传感器对葡萄糖良好的电催化作用,该方法有效实现了对葡萄糖的高灵敏检测,其线性范围为25 ~ 100 μmol·L-1和100 ~ 600 μmol·L-1,检测限为5.0 μmol·L-1(S/N=3). 该传感器具有良好的选择性、重现性和稳定性,可用于实际样品血糖的分析测定.  相似文献   

10.
亚硝酸盐是一种广泛存在的原料,长期食用会对人体健康不利甚至致癌。因此,简单、灵敏的亚硝酸盐检测方法的开发具有非常重要的意义。本文合成了金/还原氧化石墨烯/羟基氧化铁(Au/rGO/FeOOH)复合材料,并通过SEM、 XRD和EDX等测试进行了材料表征。将合成的复合材料滴涂在氧化氟锡(FTO)电极表面,利用它们的协同催化氧化性能,成功构建了一步检测亚硝酸盐(NO2-)的新型电化学传感器。在最佳优化实验条件下, 通过差分脉冲伏安法实现NO2-的定量检测, 其线性范围为0.001 ~ 5 mmol·L-1, 检出限为0.8 μmol·L-1(S/N = 3), 且响应时间小于2 s。同时, 所制备的传感器表现出良好的选择性和重现性, 也能用于实际样品的测定。  相似文献   

11.
本工作以金属有机框架材料UiO-67为载体,通过原位水解负载TiO_2,经焙烧后得到系列ZrxTi/C光催化剂。我们以四环素为典型抗生素在300 W氙灯光源下进行光降解研究,Zr_(0.3)Ti/C复合催化剂表现出优异的光催化效率,对于10 mg×L~(-1)四环素溶液,30 min可以降解98%。光降解速率常数分别是TiO_2、纯Ui O-67焙烧产物Zr-O-C的16倍和3.7倍。这得益于Zr_(0.3)Ti/C较大的比表面积,对四环素具有优异的吸附性能;同时具有能级匹配的Zr-O-C/TiO_2异质结构和高导电性碳材料共掺,有效提高了电子-空穴对的分离与迁移;机理研究表明光照下产生的超氧自由基(O_2·-)、羟基自由基(·OH)以及少量的空穴(h~+),共同促进了光催化降解四环素。本研究基于吸附和光催化协同作用原理,所提出的高比表面积、双金属活性的复合光催化材料的制备方法,对抗生素等环境污染物光降解治理方面有一定的指导作用。  相似文献   

12.
A PEC cell with nanostructured BiVO4 photoelectrode film presents outstanding azo dye degradation and simultaneous H2 production performance.  相似文献   

13.
基于催化发卡自组装反应(CHA)和电活性材料[Ru(NH3)6]Cl3,发展了一种“信号增强”型光电化学生物传感器,实现了核酸的灵敏检测. 首先,采用逐层离子吸附法(SILAR)将CdS 固定于TiO2/ITO 电极表面. 光电材料CdS 不仅能够将TiO2 的吸收范围从紫外光区拓展到可见光区,而且还能提高光电转换效率. 之后,通过Cd-S 键将捕获DNA(C-DNA)固定于CdS/ TiO2/ITO 电极表面. 与此同时,将Au 结合的发卡DNA 探针1(Au-HP1),发卡DNA 探针2(HP2)和目标DNA(T-DNA)混合物于溶液中进行CHA 反应,得到大量的Au-HP1:HP2 复合物. 再通过Au-HP1:HP2 复合物与C-DNA 的杂交反应将大量的双链DNA 引入到电极表面. 最后,将电活性物质Ru(NH3)63+嵌入DNA 的磷酸骨架中,从而使得光电流大幅度的增强. 该光电生物传感器检测核酸的线性范围为10 fmol·L-1 到 1500 fmol·L-1,检测线为6.19 fmol·L-1,在生物分析、新药筛选以及疾病的早期诊断等方面具有潜在的应用前景.  相似文献   

14.
通过金属有机物分解法(MOD)协同光电化学沉积法, 将p型氧化物半导体CuBi2O4沉积在BiVO4纳米薄膜上, 形成包覆性异质结结构, 制备了一种新型p-n异质结光阳极n-BiVO4/p-CuBi2O4, 用于太阳能光电化学(Photoelectrochemical, PEC)水分解. 研究结果表明, 在1.23 V(vs. RHE)电势下, BiVO4/CuBi2O4 异质结光阳极表现出优良的PEC水氧化性能, 光电流密度达到2.8 mA/cm2, 负载磷酸钴(Co-Pi)的BiVO4/CuBi2O4/Co-Pi光电极, 光电流密度达到4.45 mA/cm2, 分别为BiVO4电极光电流密度的3.1倍和4.9倍. X射线衍射(XRD)、 紫外-可见吸收光谱(UV-Vis)、 电化学阻抗谱(EIS)和能级结构图等结果也证实, BiVO4/CuBi2O4和BiVO4/CuBi2O4/Co-Pi复合电极材料在内建电场和能带弯曲作用下, 光吸收特性增强, 载流子界面转移电阻减小, 具有良好的光电化学性能与稳定性.  相似文献   

15.
兼具高光学质量和电化学性能的薄膜光电极难以制备, 限制了光电催化氧化技术在水处理中的的应用. 本文采用原位煅烧法制备了负载在氧化铟锡(ITO)玻璃上的石墨相氮化碳(g-C3N4)薄膜电极, 并通过掺杂K+提高其光电催化氧化性能; 对电极进行了表征, 研究了其光电催化氧化降解水中双氯芬酸钠(DCF)的效率及降解路径. 结果表明, 原位煅烧法能制备出高质量的K+/g-C3N4薄膜光电极, K+的掺杂并未明显改变电极上g-C3N4的晶型、 价态和多孔形貌, 但可以提高ITO玻璃上g-C3N4的负载量, 增强电极对可见光的响应; K+的最佳掺杂浓度为0.002 mol/L, K+/g-C3N4薄膜电极光电催化氧化降解DCF的速率常数是纯g-C3N4薄膜电极的1.86倍; 当初始pH值为4, 电压为1 V, 光源强度为0.96 W/cm2, 反应2 h后水中DCF降解率达到70%. K+/g-C3N4薄膜电极光电催化氧化过程中, 光催化氧化和电化学氧化之间存在协同作用, 两者相互增强, 并提高了反应过程中光生 空穴(h+)和羟基自由基(·OH)浓度, 在这两种活性物质作用下, 水中DCF分别被h+氧化生成咔唑衍生物、 与·OH发生加成反应生成多羟基芳香化合物, 最后开环生成小分子物质.  相似文献   

16.
Given the proper band gap, low cost and good stability, hematite(α-Fe_2O_3) has been considered as a promising candidate for photoelectrochemical(PEC) water splitting, however suffers from the sluggish surface water oxidation reaction kinetics. In this study, a simple dip-coating process was used to modify the surface of α-Fe_2O_3 nanorod arrays with cobalt oxide(CoO_x) and carbon(C) for the improved PEC performance, with a photocurrent density at 1.6 V(vs. reversible hydrogen electrode, RHE) increased from 0.10 mA/cm~2 for the pristine α-Fe_2O_3 to 0.37 mA/cm~2 for the CoO_x/C modified α-Fe_2O_3 nanorods. As revealed by electrochemical analysis, thanks to the synergistic effect of CoO_x and C, the PEC enhancement could be attributed to the enhanced charge transfer ability, decreased surface charge recombination, and accelerated water oxidation reaction kinetics. This study serves as a good example for improving PEC water splitting performance via a simple method.  相似文献   

17.
周澳  郭伟健  王月青  张进涛 《电化学》2022,28(9):2214007
电解水是有效的产氢方式之一, 开发具有高催化活性的电极材料是当前电解水的研究热点,但仍面临诸多挑战。 本研究报告了一种通过焦耳热技术快速制备多金属异质结构, 并将其用作电解水的双功能电催化剂, 展现出优异的电解水催化活性。通过焦耳热处理三种金属前驱涂覆的碳布, Mo2C和CoO/Fe3O4异质结构形成。当其用作析氢(HER)和析氧(OER)的双功能催化剂时, 仅需121 mV和268 mV的过电位,可以实现10 mA·cm-2的电流密度。当用于两电极电解水时, MoC/FeO/CoO/CC作为阳极和阴极催化剂表现出优异的电催化性能和长期稳定性, 仅需1.69 V即可实现10 mA·cm-2的电流密度, 并且展现出25小时的稳定性。本研究通过简单、 快速的焦耳热技术实现了双金属/多金属异质结构的构筑,并应用于高效水电解,为合理设计多金属异质结构提供指导。  相似文献   

18.
戴琬琳  鲁志伟  叶建山 《电化学》2019,25(2):260-269
本文采用激光刻蚀聚酰亚胺薄膜为载体, 浸泡吸附铜离子后经过二次刻蚀还原得到含有Cu(0)、Cu(I)和Cu(II)的纳米复合物薄膜电极(SLEPI/CuxO-FE). 通过表征可知,SLEPI/CuxO-FE具有大比表面积、丰富的活性位点以及良好的电催化性能. 实验结果表明,该电极对葡萄糖具有良好的电化学响应,并具有较好的稳定性和重现性,有望应用于葡萄糖的低成本检测.  相似文献   

19.
制备了石墨烯-壳聚糖复合物修饰玻碳电极(GO/CS-GCE),考察了对乙酰氨基酚(APAP)在修饰电极上的电化学行为,发现石墨烯-壳聚糖复合物能较好改善玻碳电极对APAP的电化学性能,APAP在修饰电极上的电化学反应过程是受吸附控制的2电子,2质子反应过程;进一步研究发现在pH=9.16的碳酸钠-碳酸氢钠缓冲体系中,对...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号