首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the determination of bismuth(III) in untreated sea water at its natural pH of 8.1 is described. A bare glassy-carbon rotating-disk electrode is preconditioned by placing in the sample at an applied potential of ?0.8 V vs. Ag/AgCl for 20 min; after stripping to ?0.4 V, bismuth is accumulated for 5 min at ?0.8 V and finally stripped in the square-wave mode. The bismuth peak appears at ca. + 0.10 V vs. Ag/AgCl; peak height is linearly related to concentration up to 2×10?10 mol dm?3. The method is highly selective for bismuth. The concentration of Bi(III) in the investigated sample was (6±1)×10?11 mol dm?3, or 12±2 ng dm?3. The different types of response obtained are discussed.  相似文献   

2.
We report on a new method for the selective extraction of the antibiotic sulfamethoxazole (SMO) in milk that is making use of a molecularly imprinted polymer (MIP) monolith as the sorbent. The monolith was synthesized in the tip of a micropipette using SMO as the template and a combination of acrylamide and 4-vinylpyridine as the co-functional monomers. The monolith was connected to syringes in different sizes and used for microextraction without any other treatment and showed high selectivity and enrichment ability for SMO. It was applied to the selective extraction and sensitive determination of SMO in milk. The linear range is from 5–600?μg?L?1, the correlation coefficient (r2) is 0.9984, and the detection limit (at S/N?=?3) is 1?μg?L?1. Recoveries range from 93.6 to 101.7?%, with relative standard deviations of <6.1?%.
Figure
A method for the selective extraction of sulfamethoxazole (SMO) in milk based on molecularly imprinted polymer (MIP) monolith as the sorbent was developed. The linear ranges were 5–600?μg/L for SMO in milk. High recoveries of 93.6?~?101.7?% from milk were obtained with relative standard deviations less than 6.1?%.  相似文献   

3.
In the present study, the ?5-(4-dimethylaminobenzylidene)rhodanin-modified SBA-15? was applied as stable solid sorbent for the separation and preconcentration of trace amounts of cobalt ions in aqueous solution. SBA-15 was modified by ?5-(4-dimethylaminobenzylidene)rhodanin reagent. The sorption of Co2+ ions was done onto modified sorbent in the pH range of 6.8–7.9 and desorption occurred in 5.0 mL of 3.0 mol L?1 HNO3. The results exhibit a linear dynamic range from 0.01 to 6.0 mg L?1 for cobalt. Intra-day (repeatability) and inter-day (reproducibility) for 10 replicated determination of 0.06 mg L?1 of cobalt was ±1.82% and ?±1.97%?. Detection limit was 4.2 µg L?1 (3Sb, n = 5) and preconcentration factor was 80. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type and interference ions were studied for the preconcentration of Co2+. The proposed method was applied for the determination of cobalt in standard samples, water samples and agricultural products.  相似文献   

4.
A new sorbent S-benzyldithiocarbazate (SBDTC) modified activated carbon (AC-SBDTC) was prepared and studied for preconcentration for trace mercury(II) prior to inductively coupled plasma atom emission spectrometry (ICP-AES). The experimental conditions were optimised with respect to different experimental parameters using both batch and column procedures in detail. The optimum pH value for the separation of Hg(II) on the new sorbent was 3, while the adsorption equilibrium was achieved in less than 5?min. Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 5?mL of 0.25?mol?L?1 of HCl and 2% CS(NH2)2. Common coexisting ions did not interfere with the determination. The maximum static adsorption capacity of the sorbent under optimum conditions was found to be 0.55?mmol?g?1. The detection limit of the present method was found to be 0.09?ng?mL?1, and the relative standard deviation (RSD) was lower than 2.0%. The procedure was validated by analysing the certified reference river sediment material (GBW 08301, China), the results obtained were in good agreement with standard values. This sorbent was successfully employed in the separation and preconcentration of trace Hg(II) from the natural water samples yielding 80-fold concentration factor.  相似文献   

5.
In this research a new physically functionalized nanoporous silica (SBA-15) using N′-[(2-hydroxy phenyl) methylene] benzohydrazide (BBH) was utilized as a selective sorbent for the separation, preconcentration and determination of dysprosium (Dy) in natural water by inductively coupled plasma optical emission spectrometry (ICP-OES). The selectivity of BBH to Dy (III) ion was previously tested by conductometric and spectroscopic methods. Conditions for effective adsorption of Dy were optimized with respect to experimental parameters in batch process. The extraction recovery was 96.5, analytical curve was linear in the range 0.2–1000?µgL?1, and the detection limit was 0.05?ng?mL?1. The relative standard deviation (RSD) under optimal conditions was 3.2% (n?=?10). The sorbent exhibited high adsorption capacity and fast rate of equilibrium for sorption of Dy ions. The method was applied for recovery and determination of dysprosium in different environmental water samples.  相似文献   

6.
A novel method for the determination of Pb2+ with bismuth film electrodes (BFEs) based on magneto-voltammetry was investigated. In the presence of a 0.6?T external magnetic field, square wave voltammetry of Pb2+ was performed with BFEs. A high concentration of Fe3+ was added to the analytes to generate a large cathodic current during the preconcentration step. A Lorentz force from the flux of net current through the magnetic field resulted in convection. Then, more Pb2+ deposited onto the electrode and larger stripping peak currents were observed. BFEs that were prepared by simultaneously depositing the bismuth and Pb2+ on an electrode offered a mercury-free environment for this determination. This method exhibits a high sensitivity of 4.61?µA?µM?1 for Pb2+ over the 1?×?10?8 to 1?×?10?6?M range. A detection limit as low as 8.5?×?10?10?M was obtained with only 1-min preconcentration. The method was successfully applied to determine Pb2+ in real water samples.  相似文献   

7.
In this paper, a procedure for the determination of 11 aromatic hydrocarbon-type sensitisers and their related compounds from water samples, used in the manufacture of thermal paper, is presented. The compounds were extracted using a solid-phase extraction (SPE) cartridge with an octadecyl (C18) or a phenyl-bonded silica (PH) sorbent and then determined by gas chromatography–mass spectrometry (GC–MS). Factors affecting the performance of the extraction steps were thoroughly evaluated, and their effects on the yield of the sample preparation were discussed. Under optimised experimental conditions, SPE cartridges were conditioned with 10?mL hexane followed subsequently by 10?mL methanol, loaded with water sample at 2?mL?min?1, and eluted with 10?mL hexane at 1.5?mL?min?1. The limits of detection and quantification, calculated for signal-to-noise ratios of 3 and 10, were in the range of 1–5?µg?L–1 and 2.5–10?µg?L–1, respectively. Recovery yields of the present method using river water were in the range of 88%–112% with a C18 sorbent and 86%–116% with a PH sorbent. The repeatability, expressed as a relative standard deviation, was in the range of 2.8%–11% with a C18 sorbent and 0.7%–9.7% with a PH sorbent (n?=?4). Analysis of paper mill effluents revealed the presence of aromatic hydrocarbon-type sensitisers with maximum concentrations of up to 5.2?µg?L?1.  相似文献   

8.
A new polymeric sorbent prepared by utilizing molecular imprinting technology was used for the selective extraction of hydrochlorothiazide (HCT) from pharmaceutical and human serum sample. The molecularly imprinted polymer (MIP) was prepared using HCT as the template, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EDMA) as the cross-linker monomer, and dimethylformamide (DMF) as a solvent. The optimized conditions of MIPs as a selective sorbent for the preconcentration of the HCT were studied. The results showed that the drug could be quantitatively and selectively maintained in the column to be then eluted from the sorbent by using methanol-acetic acid mixture (9:1). HCT could be determined spectrophotometrically at λmax = 270 nm. This method made it possible to quantitize HCT in the range of 0.1–21.0 μg ml-1, by less than 0.55% of RSD%, with a detection limit (S/N = 3) of 0.073 ng ml-1. The preconcentration factor of 1000, recoveries of up to 96% and retention capacity of 75.0 mg g-1 were achieved using this technique.  相似文献   

9.
In this paper, a highly selective Sudan IV molecularly imprinted polymer was synthesized by surface molecular imprinting technique in combination with a sol?Cgel process using ??-aminopropyl triethoxysilane as functional monomer, tetraethoxysilane as cross-linker and activated silica gel as support material. The imprinted polymer was characterized by FT-IR spectra, scanning electron micrograph and adsorption experiments and it was exhibited good recognition and selective ability, offered a faster rate for the adsorption of Sudan IV. Using the imprinted material as sorbent, a solid-phase extraction coupled with high-performance liquid chromatography method for determination of trace Sudan IV was presented. The detection limit (S/N = 3) was 25.2 ng L?1, and the RSD for five replicate was 2.86%. With a loading flow rate of 2.5 mL min?1 for loading 30 mL, an enrichment factor of 104 was achieved. This method was applied for extraction and determination of chilli powder and duck egg samples with good recoveries ranging from 85.3 to 98.1%.  相似文献   

10.
A new solid phase extractant, sinapinaldehyde (SA) modified SBA-15 mesoporous silica, was developed for selective extraction and preconcentration of trace Pb(II) from aqueous solutions. The successful immobilization of SA on SBA-15 and the strong interaction between SA-SBA-15 and Pb(II) were characterized and confirmed by FTIR spectroscopy and scanning electron microscopy. Parameters such as solution pH, shaking time, eluent condition and sample volume were optimized so that the maximum removal of Pb(II) from solution could be achieved. At pH 4.0, the maximum adsorption capacity of the sorbent for Pb(II) was found to be 33.6?mg?g?1 and the adsorbed Pb(II) could be completely eluted using a mixed solution of 2?M HCl and 5% CS(NH2)2. Some common metal ions such as K(I), Na(I), Mg(II), Ca(II), Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) did not interfere with the adsorption of trace Pb(II). The detection limit of the present method was found to be 1.3?ng?mL?1 and the relative standard deviation was less than 2.0% (n?=?8). These results suggested that this new sorbent is very efficient and selective for the removal of trace Pb(II) in water samples.  相似文献   

11.
This paper describes our research on the synthesis of the sorbent with chemically bonded ketoimine groups, and, furthermore, using this sorbent in the SPE technique to extract and preconcentrate trace amounts of metal ions in water samples. Surface characteristics of the sorbent were determined by elemental analysis, NMR spectra for the solid phases (29Si CP MAS NMR), and analysis of pore size distribution of the sorbent and nitrogen adsorption-desorption. The newly proposed sorbent with ketoimine groups was applied for the extraction and preconcentration of trace amounts of Cu (II), Cr (III) and Zn (II) ions from the water from a lake, post-industrial water and purified water unburdened back to the lake. The determination of the transition-metal ions was performed on an emission spectroscope with inductively coupled plasma ICP-OES. For the batch method, the optimum pH range for Cu (II) and Cr (III) extraction was equal to 5, and Zn(II)–to 8. All the metal ions can be desorbed from SPE columns with 10?mL of 0.5?mol?HNO3. The detection limits of the method were found to be 0.7?µg?L?1 for Cu (II), 0.08?µg?L?1 for Cr (III), and 0.2?µg?L?1 for Zn (II), respectively.  相似文献   

12.
A new sorbent – salen impregnated silica gel – was prepared and characterised for application as a minicolumn packing for flow-injection on-line preconcentration of cadmium(II). The system was coupled with flame atomic absorption spectrometer (FI-FAAS). The optimal pH for Cd(II) sorption was in the range of 7.4–8.8 and nitric acid (1%, v/v) was efficient as eluent. Sorption was most effective within the sample flow rate up to 7?mL?min?1. Sorption capacity of the sorbent found in a batch procedure was 26.3?µmol?g?1 (2.95?mg?g?1). Enrichment factor (EF) and limit of detection (LOD) obtained for 120-second loading time were 113 and 0.26?µg?L?1, respectively. The sorbent stability in the working conditions was proved for at least 100 preconcentration cycles. The evaluated method was applied to Cd(II) determination in various water samples.  相似文献   

13.
This work reports the application of bismuth bulk electrode (BiBE) for the determination of 2‐methyl‐4,6‐dinitrophenol (MDNP) by differential pulse voltammetry (DPV) in Britton‐Robinson buffer of pH 12.0 as an optimal medium. BiBE was prepared by transferring molten bismuth into a glass tube under constant stream of nitrogen. The linear concentration dependences were measured from 1 to 10 μmol ? L?1 and from 10 to 100 μmol ? L?1 by using optimum accumulation potential of ?0.7 V and optimum accumulation time 30 s. Under these conditions limit of determination and limit of quantification was 0.45 and 1.5 μmol ? L?1, respectively. The developed method was successfully applied for the analysis of tap water as a model sample.  相似文献   

14.
Mg-, Al and Mg-, Cu-, Al-layered double hydroxides well-known synthetic hydrotalcite-like sorbents, were used for the first time as carriers for indicators in the sorption catalytic determination of copper(II) and L-α-alanine. Mg-, Al and Mg-, Cu-, Al-layered double hydroxides were synthesized by coprecipitation and characterized using infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The adsorption of 0.50?mg?L?1 copper(II) solution by Mg-, Al-layered double hydroxides followed a pseudo-second-order model with an equilibrium sorption capacity of 24.2?×?10?3?mg?g?1 (3.8?×?10?4?mmol g?1) and a reaction rate constant of 4.2?g mg?1?min?1. Mg-, Al-layered double hydroxide tablets were prepared and used for sorption concentration and subsequent sensitive and selective sorption catalytic determination of 5.5?×?10?3 to 1.0?mg?L?1 copper(II) at the sorbent phase. The method was used for the analysis of natural water. A method was developed for the determination of α-alanine in Mg-, Cu-, Al-layered double hydroxide tablets with a limit of detection of 4.0?×?10?3 mol?L?1. In addition, thin layers of Mg-, Cu-, Al-layered double hydroxide were used to separate α-alanine and determine α-amino acids by thin-layer chromatography.  相似文献   

15.
An ion imprinted polymer coated onto magnetite (Fe3O4) nanoparticles is shown to be a useful magnetic sorbent for the fairly selective preconcentration of vanadium. The sorbent was prepared by radical copolymerization of 3-(triethoxysilyl)propyl methacrylate (the monomer), ethylene glycol dimethacrylate (the cross-linker), and the vanadium(IV) complex of 1-(2-pyridylazo-2-naphthol) in the presence of magnetite nanoparticles. The material was characterized by IR spectroscopy, scanning electron microscopy, and thermal analysis. The vanadium(IV) ions were removed from the imprint by a solution containing thiourea and HCl, and the eluent was submitted to AAS. The analytical efficiency and relative standard deviation are 99.4 and ±2.3 %, respectively, under optimum conditions, and the limit of detection is 20 ng mL?1. The method was successfully applied to the preconcentration and determination of vanadium(IV) ions in crude oil. Figure
An ion imprinted polymer is coated on to magnetite nanoparticles as a useful magnetic sorbent for the fairly selective preconcentration of vanadium which can be used for vanadium determination in crude oil.  相似文献   

16.
A new ionic liquid modified silica gel sorbent was prepared from the reaction of active silica gel with N-3-(-3-triethoxysilylepropyl)-3-methylimidazolium chloride ([(TESP)MIm]Cl). This sorbent was exploited as solid phase extractant for separation and preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). It was found that it can selectively adsorb Fe(Ш). Identification of the surface modification was performed on the basis of FT-IR. Experimental conditions for effective adsorption of trace Fe(Ш) were optimised using both batch and column procedures. At pH 3, Fe(Ш) could be quantitatively adsorbed and completely eluted by using 2?mL of 0.1?mol?L?1 of HCl. 150?mL of sample solution was adopted as the maximum sample volume and a high enrichment factor of 75 was obtained. Most common coexisting ions did not interfere with the separation and preconcentration of Fe(Ш) at optimal conditions. The maximum static adsorption capacity of the sorbent was 37.0?mg?g?1. The detection limit of the present method was 0.48?µg?L?1, and the relative standard deviation (R. S. D.) was lower than 1.7%. The method was successfully applied to the preconcentration of trace Fe(Ш) in biological and natural water samples with satisfactory results.  相似文献   

17.

An ion imprinted polymer coated onto magnetite (Fe3O4) nanoparticles is shown to be a useful magnetic sorbent for the fairly selective preconcentration of vanadium. The sorbent was prepared by radical copolymerization of 3-(triethoxysilyl)propyl methacrylate (the monomer), ethylene glycol dimethacrylate (the cross-linker), and the vanadium(IV) complex of 1-(2-pyridylazo-2-naphthol) in the presence of magnetite nanoparticles. The material was characterized by IR spectroscopy, scanning electron microscopy, and thermal analysis. The vanadium(IV) ions were removed from the imprint by a solution containing thiourea and HCl, and the eluent was submitted to AAS. The analytical efficiency and relative standard deviation are 99.4 and ±2.3 %, respectively, under optimum conditions, and the limit of detection is 20 ng mL−1. The method was successfully applied to the preconcentration and determination of vanadium(IV) ions in crude oil.

An ion imprinted polymer is coated on to magnetite nanoparticles as a useful magnetic sorbent for the fairly selective preconcentration of vanadium which can be used for vanadium determination in crude oil.

  相似文献   

18.
《Analytical letters》2012,45(1-3):216-231
The present work reports the effectiveness of a 2D imprinting method based on a surface imprinting technique for the development of a selective and sensitive flow sorbent preconcentration system for Co2+ ion determination. Cobalt ions were determined by UV-vis spectrophotometry exploiting the complexation with 1-(2-piridylazo)-2-naphtol (PAN). Based on a coefficient of relative selectivity (k'), the ion-imprinted amino-functionalized silica gel sorbent (ISG), compared with modified but non-imprinted sorbent (MSG) and silica gel (SG), showed a very high selectivity. A limit of detection of 0.51 µg L?1 and precision (n = 10) as a relative standard deviation of 2.63 and 1.50% for Co2+ concentration of 10.0 and 90.0 µg L?1, respectively, were achieved. A comparison of the proposed method with other previously published methods shows advantages in terms of sample consumption, sample throughput, and limit of detection. The application of the present method was successfully performed for the direct determination of Co2+ content in urine and environmental water samples without any interference and without sample preparation, with satisfactory results.  相似文献   

19.
1-(2-pryidylazo)-2-naphthol (PAN) immobilized on sodium dodecyl sulfate-coated nano alumina was developed for the preconcentration and determination of metal cations Co (II) from environmental and food samples. The research results displayed that adsorbent has the highest adsorption capacity for Co (II) in this system. Desorption by elution of the adsorbent with 2.0?ml of a mixture of nitric acid and ethanol was carried out. After phase separation, the enriched analyte in the final solution is determined by flame atomic absorption spectrometry (FAAS) by using a micro sample introduction system. Analytical influencing parameters including pH value, amount of sorbent, equilibrium time, sample volume, volume and concentration of eluent were examined. The effect of common matrix ions has also been investigated and it was found that they had no influence on cobalt preconcentration. Under the optimum experimental conditions, the maximum capacity of sorbent was obtained as 20?mg?g?1. The preconcentration factor and limit of detection were found to be 250 and 0.15?µg?L?1, respectively. This method showed good precision with the relative standard deviation (RSD) of 2.4% and 2.1% in concentrations of 20 and 50?µg?L?1, respectively. The accuracy of the method was evaluated by comparison of results with those obtained by electrothermal atomic absorption spectrometry. This method was successfully applied for preconcentration and determination of Co (II) in environmental and food samples.  相似文献   

20.
A new Cu(II) ion-imprinted sorbent was synthesized by a surface imprinting technique and characterized by FT-IR and SEM. Compared to the non-imprinted sorbent, the Cu(II) ion-imprinted sorbent had a higher adsorption capacity and selectivity for Cu(II). The static adsorption capacity of the Cu(II) ion-imprinted sorbent and non-imprinted sorbent for Cu(II) were 84.5 and 46.5 μmol?g?1, respectively. The best selectivity coefficient over Zn(II) or Cd(II) ion was over 12. The relative selectivity coefficients of the sorbent for Cu(II) in the presence of Zn(II) and Cd(II) were 13 and 35, respectively. Furthermore, the new sorbent possessed a fast kinetics for Cu(II) sorption from aqueous solution with saturation time of <30 min, and could be used repeatedly. The standard deviation for 11 replicate determinations of 0.5 mg?L?1 Cu(II) was 0.8%. This new Cu(II) ion-imprinted sorbent can be used as an effective solid-phase extraction material for the selective preconcentration and separation of Cu(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号