首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Amide I, II, and III vibrations of polypeptides are important marker modes whose vibrational spectra can provide critical information on structure and dynamics of proteins in solution. The extent of delocalization and vibrational properties of amide normal mode can be described by the amide local mode frequencies and intermode coupling constants between a pair of amide local modes. To determine these fundamental quantities, the previous Hessian matrix reconstruction method has been generalized here and applied to the density functional theory results for various dipeptide conformers. The calculation results are then used to simulate IR absorption, vibrational circular dichroism, and 2D IR spectra of dipeptides. The relationships between dipeptide backbone conformations and these vibrational spectra are discussed. It is believed that the present computational method and results will be of use to quantitatively simulate vibrational spectra of complicated polypeptides beyond simple dipeptides  相似文献   

2.
Neutral trialanine (Ala3), which is geometrically constrained to have its peptide bond at Phi and Psi angles of alpha-helix and PPII-like conformers, are studied at the B3LYP/6-31+G(d,p) level of theory to examine vibrational interactions between adjacent peptide units. Delocalization of the amide I, amide II, and amide III3 vibrations are analyzed by calculating their potential energy distributions (PED). The vibrational coupling strengths are estimated from the frequency shifts between the amide vibrations of Ala3 and the local amide bond vibrations of isotopically substituted Ala3 derivatives. Our calculations show the absence of vibrational coupling of the amide I and amide II bands in the PPII conformations. In contrast, the alpha-helical conformation shows strong coupling between the amide I vibrations due to the favorable orientation of the C=O bonds and the strong transitional dipole coupling. The amide III3 vibration shows weak coupling in both the alpha-helix and PPII conformations; this band can be treated as a local independent vibration. Our calculated results in general agree with our previous experimental UV Raman studies of a 21-residue mainly alanine-based peptide (AP).  相似文献   

3.
The amide I vibrational circular dichroic response of alanine dipeptide analog (ADA) was theoretically investigated and the density functional theory calculation and fragment analysis results are presented. A variety of vibrational spectroscopic properties, local and normal mode frequencies, coupling constant, dipole, and rotational strengths, are calculated by varying two dihedral angles determining the three-dimensional ADA conformation. Considering two monopeptide fragments separately, we show that the amide I vibrational circular dichroism of the ADA can be quantitatively predicted. For several representative conformations of the model ADA, vibrational circular dichroism spectra are calculated by using both the density functional theory calculation and fragment analysis methods.  相似文献   

4.
The vibrational frequency of the amide I transition of peptides is known to be sensitive to the strength of its hydrogen bonding interactions. In an effort to account for interactions with hydrogen bonding solvents in terms of electrostatics, we study the vibrational dynamics of the amide I coordinate of N-methylacetamide in prototypical polar solvents: D2O, CDCl3, and DMSO-d6. These three solvents have varying hydrogen bonding strengths, and provide three distinct solvent environments for the amide group. The frequency-frequency correlation function, the orientational correlation function, and the vibrational relaxation rate of the amide I vibration in each solvent are retrieved by using three-pulse vibrational photon echoes, two-dimensional infrared spectroscopy, and pump-probe spectroscopy. Direct comparisons are made to molecular dynamics simulations. We find good quantitative agreement between the experimentally retrieved and simulated correlation functions over all time scales when the solute-solvent interactions are determined from the electrostatic potential between the solvent and the atomic sites of the amide group.  相似文献   

5.
Population transfer between vibrational eigenstates is important for many phenomena in chemistry. In solution, this transfer is induced by fluctuations in molecular conformation as well as in the surrounding solvent. We develop a joint electrostatic density functional theory map that allows us to connect the mixing of and thereby the relaxation between the amide I and amide II modes of the peptide building block N-methyl acetamide. This map enables us to extract a fluctuating vibrational Hamiltonian from molecular dynamics trajectories. The linear absorption spectrum, population transfer, and two-dimensional infrared spectra are then obtained from this Hamiltonian by numerical integration of the Schrodinger equation. We show that the amide I/amide II cross peaks in two-dimensional infrared spectra in principle allow one to follow the vibrational population transfer between these two modes. Our simulations of N-methyl acetamide in heavy water predict an efficient relaxation between the two modes with a time scale of 790 fs. This accounts for most of the relaxation of the amide I band in peptides, which has been observed to take place on a time scale of 450 fs in N-methyl acetamide. We therefore conclude that in polypeptides, energy transfer to the amide II mode offers the main relaxation channel for the amide I vibration.  相似文献   

6.
In the present study, anharmonic vibrational properties of the amide modes in N-methylacetamide (NMA), a model molecule for peptide vibrational spectroscopy, are examined by DFT calculations. The 3N-6 normal mode frequencies, diagonal and off-diagonal anharmonicities are evaluated by means of the second order vibrational perturbation theory (VPT2). Good performance of B3LYP/6-31+G** is found for predicting vibrational frequencies in comparison with gas phase experimental data. The amide vibrational modes are assigned through potential energy distribution analysis (PED). The solvation effect on the amide vibrational modes is modeled within the PCM method. From gas phase to polar solvents, red shifts are observed for both harmonic and anharmonic vibrational frequency of amide I mode while the CO bond length increases upon the solvent polarity. Cubic and quartic force constants are further calculated to evaluate the origin of the anharmonicity for the amide I mode of NMA in different micro-environments.  相似文献   

7.
By carrying out molecular dynamics simulations of an N-methylacetamide (NMA) in methanol solution, the amide I mode frequency fluctuation and hydrogen bonding dynamics were theoretically investigated. Combining an extrapolation formula developed from systematic ab initio calculation studies of NMA-(CH3OH)n clusters with a classical molecular dynamics simulation method, we were able to quantitatively describe the solvatochromic vibrational frequency shift induced by the hydrogen-bonding interaction between NMA and solvent methanol. It was found that the fluctuating amide I mode frequency distribution is notably non-Gaussian and it can be decomposed into two Gaussian peaks that are associated with two distinctively different solvation structures. The ensemble-average-calculated linear response function associated with the IR absorption is found to be oscillating, which is in turn related to the doublet amide I band shape. Numerically calculated infrared absorption spectra are directly compared with experiment and the agreement was found to be excellent. By using the Onsager's regression hypothesis, the rate constants of the interconversion process between the two solvation structures were obtained. Then, the nonlinear response functions associated with two-dimensional infrared pump-probe spectroscopy were simulated. The physics behind the two-dimensional line shape and origin of the cross peaks in the time-resolved pump-probe spectra is explained and the result is compared with 2D spectra experimentally measured recently by Woutersen et al.  相似文献   

8.
Molecular dynamics simulations of the structural distributions and the associated amide-I vibrational modes are carried out for dialanine peptide in water and carbon tetrachloride. The various manifestations in nonlinear-infrared spectroscopic experiments of the distributions of conformations of solvated dialanine are examined. The two-dimensional infrared (2D-IR) spectrum of dialanine exhibits the coupling between the amide oscillators and the correlations of the frequency fluctuations. An internally hydrogen-bonded conformation exists in CCl(4) but not in H(2)O where two externally hydrogen-bonded forms are preferred. Simulations of solvated dialanine show how the 2D-IR spectra expose the underlying structural distributions and dynamics that are not deducible from linear-infrared spectra. In H(2)O the 2D-IR shows cross-peaks from large coupling in the alpha-helical conformer and an elongated higher frequency diagonal peak, reflecting the broader distribution of structures for the more flexible acetyl end. In CCl(4), the computed cross-peak portion of the 2D-IR shows evidence of two amide-I transitions in the high-frequency region which are not apparent from the diagonal peak profile. The vibrational frequency inhomogeneity of the amide-I band arises from fluctuations of the instantaneous normal modes of these conformers rather than the shifts induced by hydrogen bonding. The simulation shows that there are correlations between fluctuations of the acetyl and amino end frequencies in H(2)O that arise from mechanical coupling and not from hydrogen bonding at the two ends of the molecule. The angular relationships between the two amide units which also show up in 2D-IR were computed, and spectral manifestations of them are discussed. The simulations also permit a calculation of the rate of energy transfer from one side of the molecule to the other. From these calculations, 2D-IR spectroscopy in conjunction with simulations is seen to be a promising tool for determining dynamics of structure changes in dipeptides.  相似文献   

9.
The linear and two-dimensional infrared (2DIR) responses of the amide I vibrational mode in liquid formamide are investigated experimentally and theoretically using molecular dynamics simulations. The recent method based on the numerical integration of the Schr?dinger equation is employed to calculate the 2DIR spectra. Special attention is devoted to the interplay of the structural dynamics and the excitonic nature of the amide I modes in determining the optical response of the studied system. In particular, combining experimental data, simulated spectra and analysis of the simulated atomic trajectory in terms of a transition dipole coupling model, we provide a convincing explanation of the peculiar features of the 2DIR spectra, which show a substantial increase of the antidiagonal bandwidth with increasing frequency. We point out that, at variance with liquid water, the 2DIR spectral profile of formamide is determined more by the excitonic nature of the vibrational states than by the fast structural dynamics responsible for the frequency fluctuations.  相似文献   

10.
We studied the vibrational energy relaxation mechanisms of the amide I and amide II modes of N-methylacetamide (NMA) monomers dissolved in bromoform using polarization-resolved femtosecond two-color vibrational spectroscopy. The results show that the excited amide I vibration transfers its excitation energy to the amide II vibration with a time constant of 8.3 ± 1 ps. In addition to this energy exchange process, we observe that the excited amide I and amide II vibrations both relax to a final thermal state. For the amide I mode this latter process dominates the vibrational relaxation of this mode. We find that the vibrational relaxation of the amide I mode depends on frequency which can be well explained from the presence of two subbands with different vibrational lifetimes (~1.1 ps on the low frequency side and ~2.7 ps on the high frequency side) in the amide I absorption spectrum.  相似文献   

11.
With use of a time-dependent perturbation theory, vibrational energy relaxation (VER) of isotopically labeled amide I modes in cytochrome c solvated with water is investigated. Contributions to the VER are decomposed into two contributions from the protein and water. The VER pathways are visualized by using radial and angular excitation functions for resonant normal modes. Key differences of VER among different amide I modes are demonstrated, leading to a detailed picture of the spatial anisotropy of the VER. The results support the experimental observation that amide I modes in proteins relax with subpicosecond time scales, while the relaxation mechanism turns out to be sensitive to the environment of the amide I mode.  相似文献   

12.
Quantum dynamical simulations of vibrational spectroscopy have been carried out for glycine dipeptide (CH(3)-CO-NH-CH(2)-CO-NH-CH(3)). Conformational structure and dynamics are modeled in terms of the two Ramachandran dihedral angles of the molecular backbone. Potential energy surfaces and harmonic frequencies are obtained from electronic structure calculations at the density functional theory (DFT) [B3LYP/6-31+G(d)] level. The ordering of the energetically most stable isomers (C(7) and C(5)) is reversed upon inclusion of the quantum mechanical zero point vibrational energy. Vibrational spectra of various isomers show distinct differences, mainly in the region of the amide modes, thereby relating conformational structures and vibrational spectra. Conformational dynamics is modeled by propagation of quantum mechanical wave packets. Assuming a directed energy transfer to the torsional degrees of freedom, transitions between the C(7) and C(5) minimum energy structures occur on a sub-picosecond time scale (700...800 fs). Vibrationally nonadiabatic effects are investigated for the case of the coupled, fundamentally excited amide I states. Using a two state-two mode model, the resulting wave packet dynamics is found to be strongly nonadiabatic due to the presence of a seam of the two potential energy surfaces. Initially prepared adiabatic vibrational states decay upon conformational change on a time scale of 200...500 fs with population transfer of more than 50% between the coupled amide I states. Also the vibrational energy transport between localized (excitonic) amide I vibrational states is strongly influenced by torsional dynamics of the molecular backbone where both enhanced and reduced decay rates are found. All these observations should allow the detection of conformational changes by means of time-dependent vibrational spectroscopy.  相似文献   

13.
14.
Using the constrained molecular dynamics simulation method in combination with quantum chemistry calculation, Hessian matrix reconstruction, and fragmentation approximation methods, the authors have established computational schemes for numerical simulations of amide I IR absorption, vibrational circular dichroism (VCD), and two-dimensional (2D) IR photon echo spectra of the protein ubiquitin in water. Vibrational characteristic features of these spectra in the amide I vibration region are discussed. From the semiempirical quantum chemistry calculation results on an isolated ubiquitin, amide I local mode frequencies and vibrational coupling constants were fully determined. It turns out that the amide I local mode frequencies of ubiquitin in both gas phase and aqueous solution are highly heterogeneous and site dependent. To directly test the quantitative validity of thus obtained spectroscopic properties, they compared the experimentally measured amide I IR, 2D IR, and electronic circular dichroism spectra with experiments, and found good agreements between theory and experiments. However, the simulated VCD spectrum is just qualitatively similar to the experimentally measured one. This indicates that, due to delicate cancellations between the positive and negative VCD contributions, the prediction of protein VCD spectrum is critically relied on quantitative accuracy of the theoretical model for predicting amide I local mode frequencies. On the basis of the present comparative investigations, they found that the site dependency of amide I local mode frequency, i.e., diagonal heterogeneity of the vibrational Hamiltonian matrix in the amide I local mode basis, is important. It is believed that the present computational methods for simulating various vibrational and electronic spectra of proteins will be of use in further refining classical force fields and in addressing the structure-spectra relationships of proteins in solution.  相似文献   

15.
Hydrogen-bonding dynamics in aqueous solutions of series of amides and acids have been investigated by means of femtosecond Raman-induced Kerr effect spectroscopy and ab initio quantum chemistry calculation. The amides and acids studied here are acetamide, 1,3-propanedicarboxamide, 1,3,5-pentanetricaroxamide, polyacrylamide with Mw=1500, acetic acid, 1,3-propanedicarboxylic acid, 1,3,5-pentanetricarboxylic acid, and poly(acrylic acid) with Mw=2000. The femtosecond damped transient feature for aqueous amide solutions, which arises from the intermolecular hydrogen bonds of amide and water, becomes clearer with the larger molecular weight of amide. A characteristic vibrational band at about 100 cm(-1) is assigned as the hydrogen-bonding vibrational mode and the ab initio quantum chemistry calculation result indicates that at least two waters, which make up the hydrogen-bonding network with amide, are necessary for this mode. The hydrogen-bonding vibrational mode at about 100 cm(-1) in aqueous amide solutions shifts to the higher frequency with the larger molecular weight amide in consequence of the stronger intermolecular interaction between amide and water. The evidence likely comes from the stronger hydrophobic interaction for polymer than oligomers and monomer. In the picosecond time region, an extra slow relaxation process with a time constant of about 60 ps has been found in the aqueous polymer solutions. The relaxation is assigned as a local motion of the constitutional repeat unit of polymers from comparison with monomer and oligomers.  相似文献   

16.
Theoretical simulations are used to investigate the effects of aqueous solvent on the vibrational spectra of model alpha-helices, which are only partly exposed to solvent to mimic alpha-helices in proteins. Infrared absorption (IR) and vibrational circular dichroism (VCD) amide I' spectra for 15-amide alanine alpha-helices are simulated using density functional theory (DFT) calculations combined with the property transfer method. The solvent is modeled by explicit water molecules hydrogen bonded to the solvated amide groups. Simulated spectra for two partially solvated model alpha-helices, one corresponding to a more exposed and the other to a more buried structure, are compared to the fully solvated and unsolvated (gas phase) simulations. The dependence of the amide I spectra on the orientation of the partially solvated helix with respect to the solvent and effects of solvation on the amide I' of 13C isotopically substituted alpha-helices are also investigated. The partial exposure to solvent causes significant broadening of the amide I' bands due to differences in the vibrational frequencies of the explicitly solvated and unsolvated amide groups. The different degree of partial solvation is reflected primarily in the frequency shifts of the unsolvated (buried) amide group vibrations. Depending on which side of the alpha-helix is exposed to solvent, the simulated IR band-shapes exhibit significant changes, from broad and relatively featureless to distinctly split into two maxima. The simulated amide I' VCD band-shapes for the partially solvated alpha-helices parallel the broadening of the IR and exhibit more sign variation, but generally preserve the sign pattern characteristic of the alpha-helical structures and are much less dependent on the alpha-helix orientation with respect to the solvent. The simulated amide I' IR spectra for the model peptides with explicitly hydrogen-bonded water are consistent with the experimental data for small alpha-helical proteins at very low temperatures, but overestimate the effects of solvent on the protein spectra at ambient temperatures, where the peptide-water hydrogen bonds are weakened by thermal motion.  相似文献   

17.
Heterodyned two-dimensional infrared (2D IR) spectroscopy has been used to study the amide I vibrational dynamics of a 27-residue peptide in lipid vesicles that encompasses the transmembrane domain of the T-cell receptor CD3zeta. Using 1-(13)C[Double Bond](18)O isotope labeling, the amide I mode of the 49-Leucine residue was spectroscopically isolated and the homogeneous and inhomogeneous linewidths of this mode were measured by fitting the 2D IR spectrum collected with a photon echo pulse sequence. The pure dephasing and inhomogeneous linewidths are 2 and 32 cm(-1), respectively. The population relaxation time of the amide I band was measured with a transient grating, and it contributes 9 cm(-1) to the linewidth. Comparison of the 49-Leucine amide I mode and the amide I band of the entire CD3zeta peptide reveals that the vibrational dynamics are not uniform along the length of the peptide. Possible origins for the large amount of inhomogeneity present at the 49-Leucine site are discussed.  相似文献   

18.
19.
The NMR coupling constants ((3)J(H(N), H(alpha))) of dipeptides indicate that the backbone conformational preferences vary strikingly among dipeptides. These preferences are similar to those of residues in small peptides, denatured proteins, and the coil regions of native proteins. Detailed characterization of the conformational preferences of dipeptides is therefore of fundamental importance for understanding protein structure and folding. Here, we studied the conformational preferences of 13 dipeptides using infrared and Raman spectroscopy. The main advantage of vibrational spectroscopy over NMR spectroscopy is in its much shorter time scale, which enables the determination of the conformational preferences of short-lived states. Accuracy of structure determination using vibrational spectroscopy depends critically on identification of the vibrational parameters that are sensitive to changes in conformation. We show that the frequencies of the amide I band and the A12 ratio of the amide I components of dipeptides correlate with the (3)J(H(N), H(alpha)). These two infrared vibrational parameters are thus analogous to (3)J(H(N), H(alpha)), indicators for the preference for the dihedral angle phi. We also show that the intensities of the components of the amide III bands in infrared spectra and the intensities of the skeletal vibrations in Raman spectra are indicators of populations of the P(II), beta, and alpha(R) conformations. The results show that alanine dipeptide adopts predominantly a PII conformation. The population of the beta conformation increases in valine dipeptides. The populations of the alpha(R) conformation are generally small. These data are in accord with the electrostatic screening model of conformational preferences.  相似文献   

20.
Structural calculations by means of the density functional method have been performed on tetraoxaporphyrin dication and on isoelectronic diprotonated porphyrin as well as on the sulfur and carbon analogues of porphyrin. A detailed study of the stable conformations of these compounds is reported starting with the most symmetrical conformations and lowering the symmetry along the vibrational coordinates with imaginary frequency. The calculated geometries are related to experimental structures available from X-ray diffraction studies. The Raman spectra of tetraoxaporphyrin dication exciting with micro-Raman instrumentation at 785 nm and of diprotonated porphyrin in near-resonance conditions with the Soret band have been measured. The correlation between frequencies calculated with the DF/B3-LYP/cc-pVDZ procedure for porphyrin, diprotonated porphyrin, and tetraoxaporphyrin dication has allowed for making a vibrational assignment for the latter two systems in excellent agreement with experiment using a single frequency scale factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号