首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
研究发现微生物燃料电池从启动到稳定运行的过程中往往存在一种现象,就是在高电流密度下,微生物燃料电池的输出电压会出现逆转,从而限制了微生物燃料电池的规模化应用,以及它在污废水处理、脱盐等方面的功能.
  前期研究发现,微生物燃料电池的性能逆转现象与阳极材料的电容性能有关.电极材料的电容越大,越有利于微生物燃料电池的产电性能稳定,换言之,阳极材料电容不足导致产电性能逆转.但是超级电容活性炭的制作工艺繁琐,成本高,且导电性弱,不能满足微生物燃料电池的应用需求.炭黑的导电能力强、化学稳定性高、成本低,但作为微生物燃料电池的阳极则产生产电性能逆转现象.
  化学修饰(如酸、碱活化或者添加具有赝电容性质的金属氧化物等)可以提高材料的电容性能.低温条件(80 oC)下,对低电容材料—炭黑进行HNO3和KOH的化学活化处理,并在此基础上,进一步用5%Fe3O4修饰,采用辊压工艺,以质量分数为60%的聚四氟乙烯乳液为粘结剂,制作微生物燃料电池的阳极,与空气阴极构建单室微生物燃料电池系统.采用傅里叶变换红外光谱(FTIR)、比表面积测试、材料表面pH和X射线能量分析光谱(EDX)等手段表征炭黑活化前后的物理、化学性质;接触角润湿性测试表征活化前后电极表面的亲疏水性.电化学循环伏安法测试活化前后,电极的电子存储能力.
  与蒸馏水的pH相比较,材料表面pH分析表明炭黑材料经化学活化处理后,其表面pH无明显变化; FTIR和EDX测试表明化学活化处理使得炭黑表面引入含O(N)官能团;吸附-脱附曲线分析表明化学活化后,炭黑的比表面积减小,微孔与介孔的体积比增加;接触角测试表明炭黑阳极活化处理后,电极表面亲水性增加;循环伏安测试证实,化学活化后的炭黑阳极电容得到0.1–0.8 F/cm2的增长.结合燃料电池的产电性能测试,发现只有当炭黑阳极电容不小于1.1 F/cm2时,微生物燃料电池的产电逆转现象才会消失.炭黑阳极的化学活化方法为微生物燃料电池的性能稳定提供了一种简便、低成本的方法.  相似文献   

2.
本文研究了绿脓杆菌分泌的电子中介体绿脓菌素与电极之间的反应,并探讨了溶解氧的影响.通过循环伏安曲线、测试电极开路电位等方法,确定绿脓菌素阳极反应是受扩散控制的可逆反应.菌液的溶解氧浓度在一定范围内(0~1.6 mg·L-1)对绿脓菌素和电极之间的反应影响不大.微生物燃料电池的极化曲线表明,当溶解氧为1.6mg·L-1时,微生物燃料电池输出电流下降了7%,对绿脓杆菌阳极的微生物燃料电池影响不大.  相似文献   

3.
利用淡水沉积物作为接种源构建了微生物燃料电池,考察苯酚对该微生物燃料电池性能的影响.结果表明,在淡水沉积物接种的微生物燃料电池中,电流的产生是由富集在电极表面的细菌引起的.苯酚降低了细菌消耗葡萄糖的速率,并在加入相同量葡萄糖的情况下,延长了产电时间.另一方面,实验还研究了一株从沉积物微生物燃料电池中分离出的单菌株的产电情况.该菌株在微生物燃料电池中需要借助自身代谢产生有电极反应活性的中间产物才能产电.GC-MS分析表明,中间产物中有吩嗪类物质,该类物质可在该细菌细胞与石墨电极之间充当电子传递介体,实现电子从细胞向电极的传递.  相似文献   

4.
微生物燃料电池电极材料研究进展   总被引:1,自引:0,他引:1  
微生物燃料电池以微生物为催化剂将化学能直接转化成电能,可用于废水处理并产生电能,是一种极具应用前景的生物电化学技术.本文综述了近年来微生物燃料电池电极材料的制备、功能修饰及表面构建等研究进展,着重介绍了碳基纳米材料的微结构与成分对微生物燃料电池性能的影响,并分析了微生物燃料电池电极材料现存的主要问题,以期不久的将来微生物燃料电池能付之实用.  相似文献   

5.
微生物细胞与微生物燃料电池阳极之间的电子传递效率是影响产电性能的关键因素.借助阳极修饰可以促进电子转移速率,提高电池的性能.本文合成了一种以聚4-乙烯基吡啶为骨架,中性红单体为氧化还原活性中心、具有良好导电性和生物兼容性的氧化还原水凝胶材料.其中通过共价键合固定氧化还原中介体,避免了对外界环境的二次污染.以该材料修饰碳纸作为阳极组装电池,实验表明经过修饰的生物阳极驯化周期缩短,阳极电势更接近NADH/NAD的平衡电位.该电池的功率密度较未修饰的电极的电池有明显的提高.  相似文献   

6.
金属离子在微生物燃料电池中的行为   总被引:1,自引:0,他引:1  
在废水处理方面,微生物燃料电池具有在净化废水的同时回收能源或有价值化学品等突出优点,已经成为人们研究的热点。在微生物燃料电池中,金属离子能直接或者间接参与阳极和阴极过程,其对溶液的电导率、反应器的内阻和功率密度、产电微生物的活性等都有重要影响。本文综述了金属离子参与微生物燃料电池的机制及其影响因素,并且介绍了微生物燃料电池在去除废水或者固体废弃物中重金属离子方面的优势和发展前景。  相似文献   

7.
研究发现微生物燃料电池从启动到稳定运行的过程中往往存在一种现象,就是在高电流密度下,微生物燃料电池的输出电压会出现逆转,从而限制了微生物燃料电池的规模化应用,以及它在污废水处理、脱盐等方面的功能.前期研究发现,微生物燃料电池的性能逆转现象与阳极材料的电容性能有关.电极材料的电容越大,越有利于微生物燃料电池的产电性能稳定,换言之,阳极材料电容不足导致产电性能逆转.但是超级电容活性炭的制作工艺繁琐,成本高,且导电性弱,不能满足微生物燃料电池的应用需求.炭黑的导电能力强、化学稳定性高、成本低,但作为微生物燃料电池的阳极则产生产电性能逆转现象.化学修饰(如酸、碱活化或者添加具有赝电容性质的金属氧化物等)可以提高材料的电容性能.低温条件(80℃)下,对低电容材料—炭黑进行HNO3和KOH的化学活化处理,并在此基础上,进一步用5%Fe3O4修饰,采用辊压工艺,以质量分数为60%的聚四氟乙烯乳液为粘结剂,制作微生物燃料电池的阳极,与空气阴极构建单室微生物燃料电池系统.采用傅里叶变换红外光谱(FTIR)、比表面积测试、材料表面pH和X射线能量分析光谱(EDX)等手段表征炭黑活化前后的物理、化学性质;接触角润湿性测试表征活化前后电极表面的亲疏水性.电化学循环伏安法测试活化前后,电极的电子存储能力.与蒸馏水的p H相比较,材料表面pH分析表明炭黑材料经化学活化处理后,其表面pH无明显变化;FTIR和EDX测试表明化学活化处理使得炭黑表面引入含O(N)官能团;吸附-脱附曲线分析表明化学活化后,炭黑的比表面积减小,微孔与介孔的体积比增加;接触角测试表明炭黑阳极活化处理后,电极表面亲水性增加;循环伏安测试证实,化学活化后的炭黑阳极电容得到0.1–0.8F/cm2的增长.结合燃料电池的产电性能测试,发现只有当炭黑阳极电容不小于1.1 F/cm2时,微生物燃料电池的产电逆转现象才会消失.炭黑阳极的化学活化方法为微生物燃料电池的性能稳定提供了一种简便、低成本的方法.  相似文献   

8.
共基质改善MFC处理链霉素废水及产电性能的研究   总被引:1,自引:0,他引:1  
以K_3[Fe(CN)_6]和NaCl混合溶液为阴极液,以驯化的人工湖泊底泥为微生物菌种,以链霉素废水为阳极液,构建微生物燃料电池实验系统,研究添加共基质前后微生物燃料电池的废水处理效果与同步发电性能。结果表明,以链霉素废水为阳极液的微生物燃料电池的产电能力及废水处理效果均较差,并且随着链霉素浓度的增大而进一步恶化;但将葡萄糖作为共基质添加至阳极链霉素废水后,微生物燃料电池的产电能力和废水处理效果均显著提高。链霉素浓度为50 mg/L时,未添加共基质的微生物燃料电池处理链霉素废水的COD去除率为52%,产电电流密度为25 m A/m~2,输出电压为4.72 m V;添加共基质后,COD去除率为92%,稳态产电电流密度为300 m A/m~2,稳态输出电压为54 m V。  相似文献   

9.
微生物燃料电池是一种利用电化学活性微生物催化降解有机物的同时产生电能的新型产能装置。阳极电化学活性微生物特征及催化活性是影响微生物燃料电池产电效率的关键因素之一。本文对应用于阳极上的电化学活性微生物的富集、来源、菌种的生理生化特征及产电能力等进行了综述。  相似文献   

10.
微生物燃料电池(Microbial fuel cell,MFC)是一种利用微生物将化学能直接转化为电能的装置.近年来,除改善微生物燃料电池的输出性能外,研究者也不断开发其在传感分析中的应用.基于微生物燃料电池的传感分析装置无需外加电源,具有操作简单、可连续检测等优点,是一种极具应用前景的传感分析技术.本文依据这些传感分析装置的用途进行分类,主要综述了微生物燃料电池在检测分析生化需氧量(BOD)、挥发性脂肪酸、毒性物质、微生物活性和数量以及其它方面的研究,并对其发展趋势和应用前景进行了展望.  相似文献   

11.
Bioenergetics can be used to analyze the theoretical voltage output of a microbial fuel cell (MFC) and the thermodynamic driving force in microbiologically influenced corrosion (MIC). MFCs involve both inward and outward extracellular electron transfer (EET), whereas only inward EET is behind EET–MIC caused by an electroactive biofilm's harvest of energy from a metal. EET is often rate-limiting, and it is an important process in microbial energy metabolism. EET is critical to the understanding of MFCs and EET–MIC bioelectrochemical processes. Many advances have been made in the past decade on EET by MFC and MIC researchers. Gene manipulations have been used to improve EET in MFCs, leading to enhanced energy output. They have also been used to elucidate the EET processes for better understanding of EET–MIC, which aids in MIC analysis and decision-making of biocide treatment and its efficacy assessment. Researchers are starting to integrate EET knowledge from both fields.  相似文献   

12.
In microbial fuel cells (MFCs), the electron transfer from microorganisms to the cell anode is a decisive factor on the power output. Though quinone derivatives can function as electron shuttles, the electron shuttle pathways have so far not been demonstrated. In this paper, the mechanism of electron shuttle via an exogenous mediator was studied in MFCs using Geobacter metallireducens (G. metallireducens). 1-hydroxy-4-aminoanthraquinone was labeled by fluorescamine and the product (HAQ-F) showed strong and stable fluorescence. The addition of HAQ-F into MFCs increased cell voltage from 170 mV to 290 mV, suggesting that the redox mediator could facilitate electron transfer from bacteria to anode. Further, confocal laser scanning microscopy imaging indicated that HAQ-F was present in microbial cells, demonstrating that the redox mediator shuttled across the membranes to get reduced within cells.  相似文献   

13.
Bioelectrochemical systems (BESs) provide favorable opportunities for the sustainable conversion of energy from biological metabolism. Biological photovoltaics (BPVs) and microbial fuel cells (MFCs) respectively realize the conversion of renewable solar energy and bioenergy into electrical energy by utilizing electroactive biological extracellular electron transfer, however, along with this energy conversion progress, relatively poor durability and low output performance are challenges as well as opportunities. Advances in improving bio-electrode interface compatibility will help to solve the problem of insufficient performance and further have a far-reaching impact on the development of bioelectronics. Conjugated polymers (CPs) with specific optical and electrical properties (absorption and emission spectra, energy band structure and electrical conductivity) afforded by π-conjugated backbones are conducive to enhancing the electron generation and output capacity of electroactive organisms. Furthermore, the water solubility, functionality, biocompatibility and mechanical properties optimized through appropriate modification of side chain provide a more adaptive contact interface between biomaterials and electrodes. In this minireview, we summarize the prominent contributions of CPs in the aspect of augmenting the photovoltaic response of BPVs and power supply of MFCs, and specifically discussed the role of CPs with expectation to provide inspirations for the design of bioelectronic devices in the future.  相似文献   

14.
As the consequences of global warming continue to affect the climate, there is an increased need for technologies that decrease dependence on fossil fuel consumption and promote sustainability. Additive manufacturing (AM) not only enables the scale-up and mass production of renewable energy technologies but also reduces cost and lead time, minimizes waste, and uses less energy than traditional manufacturing processes. Moreover, AM brings design and innovation to the forefront by allowing for design strategy revision and rapid prototyping. Herein, AM approaches used to fabricate devices that enable biological power generation are described. Biological power generation is a process through which biocatalysts – electroactive bacteria, enzymes, or cyanobacteria – harvest electrons from chemical substrates or light. Device engineering directs electron transfer events to a conductive material and maximizes power output. This review covers recent AM approaches for biological power generation in the form of microbial fuel cells (MFCs), enzymatic fuel cells, and biophotovoltaic cells with an emphasis on MFCs. Fabrication methods and materials for electrodes, chambers, inserts, membranes, and biofilms are described, along with impacts on device performance.  相似文献   

15.
以双室微生物燃料电池为反应器,铁氰化钾为阴极液,研究污水处理厂活性污泥菌液和玉米秸秆水解液对MFC的产电性能的影响。结果表明,随着阳极中活性污泥菌液体积(1.5、3.0、4.5、6.0 mL)增加,MFC的产电量逐渐增加,当活性污泥的体积增加至7.5 mL时,产电量开始呈下降趋势;玉米秸秆水解液在底物中的浓度为0、10、15、20、30、40 g/L时,电池的稳定电压分别为54、157、248、208、170、146 mV。当阳极活性污泥菌液体积为6 mL、玉米秸秆水解液浓度为15 g/L时,微生物燃料电池的产电性能最佳,此时MFC的功率密度为54.6 mW/m2,内阻为496 Ω。同时,循环伏安曲线(C-V)和交流阻抗曲线(EIS)测试可知,MFC的电极过程由电荷传递和扩散过程共同控制,反应过程受电子传递控制。  相似文献   

16.
Jiang  Demin  Zhu  Chenyi  He  Yuan  Xing  ChengCheng  Xie  Kun  Xu  Yan  Wang  Yuqiao 《Journal of Solid State Electrochemistry》2022,26(11):2435-2443
Journal of Solid State Electrochemistry - Anodes play an important role in the extracellular electron transfer (EET) process in microbial fuel cells (MFCs). Herein, polyaniline modified...  相似文献   

17.
Since the microbial fuel cells (MFCs) research in the laboratory has reached an unprecedented success, it has raised a research upsurge internationally in recent years. However, compared with laboratory studies, the widespread applications of the conventional MFCs were restrained by the limitations of high cost and low efficiency. This stimulates researchers to overcome the obstacles. In this condition, bio-cathodes attracted their great interests. This paper is a brief review about the experimental progress of bio-cathodes in microbial fuel cells with an emphasis on the classification according to the final electron acceptors and the comparison with the traditional abiotic cathode MFCs. Bio-cathodes are feasible in removing nutrient in wastewater treatment and being used as biosensors in bioremediation. Presently, tremendous efforts are being made in investigating appropriate electrodes and dominant strains to achieve the effective practical applications.  相似文献   

18.
A new perspective of electron transfer chemistry is described for fine control of electron transfer reactions including back electron transfer in the charge separated state of artificial photosynthetic compounds and its synthetic application. Fundamental electron transfer properties of suitable components of efficient electron transfer systems are described in light of the Marcus theory of electron transfer, in particular focusing on the Marcus inverted region, and they are applied to design multi-step electron transfer systems which can well mimic the function of a photosynthetic reaction center. Both intermolecular and intramolecular electron transfer processes are finely controlled by complexation of radical anions, produced in the electron transfer, with metal ions which act as Lewis acids. Quantitative measures to determine the Lewis acidity of a variety of metal ions are given in relation to the promoting effects of metal ions on the electron transfer reactions. The mechanistic viability of metal ion catalysis in electron transfer reactions is demonstrated by a variety of examples of chemical transformations involving metal ion-promoted electron transfer processes as the rate-determining steps, which are made possible by complexation of radical anions with metal ions.  相似文献   

19.
《Electroanalysis》2017,29(9):2036-2043
The properties of anode material are crucial for high performances in microbial fuel cells (MFCs). Herein, we report a biocompatible, conductive, and electron transfer efficient cooperative processing anode, which is fabricated by electrodepositing polypyrrole/anthraquinone‐2, 6‐disulphonic disodium salt (PPy/AQDS) onto nitric acid‐soaked carbon felt. Results showed that the cooperative processing anode outperformed the pristine one in biomass, electrical conductivity, and exchange current density with better performance between 2.4 and 3.3 times. The maximum power density (1060.3 mW m−2) of the MFC equipped with the properties hybridized anode delivered a 2.2‐fold increase over that of the control and thus has great potential to be used as an anode for high‐power MFC. Further investigation revealed that the contributions of biocompatibility (BCB), electrical conductivity (EC), and electron transfer efficiency (ETE) to the performance of carbon felt anodes appeared as cumulative effect rather than summing effect. We propose combined treatment of BCB with EC and ETE to form a properties‐hybridized anode based on thoroughly analyzing the feasibility and effectiveness, and discussed future efforts to be made for realizing more extraordinary high‐performance cooperative processing anodes. This work may also provide a novel approach for the development of other types of anode for high‐performance MFC through combined treating the BCB with EC and ETE simultaneously.  相似文献   

20.
The physicochemical properties of anode material are important for the electron transfer of anode bacteria and electricity generation of microbial fuel cells (MFCs). In this work, carbon cloth anode was pretreated with isopropanol, hydrogen peroxide (H2O2) and sodium hypochlorite (NaOCl) in order to reduce the anode functional groups. The influence of functional groups on the electrochemical properties of carbon cloth anode and power generation of MFCs was investigated. The anode pretreatments removed the surface sizing layer of carbon cloth and substantially reduced the contents of C‐O and pyridinic/pyrrolic N groups on the anode. Electrochemical impedance spectroscopy and cyclic voltammetry analyses of the biofilm‐matured anodes revealed an enhanced electrochemical electron transfer property because of the anode pretreatments. As compared with the untreated control (612 ± 6 mW m?2), the maximum power density of an acetate‐fed single‐chamber MFC was increased by 26% (773 ± 5 mW m?2) with the isopropanol treated anode. Additional treatment with H2O2 and NaOCl further increased the maximum power output to 844 ± 5 mW m?2 and 831 ± 4 mWm?2. A nearly inverse liner relationship was observed between the contents of C‐O and pyridinic/pyrrolic N groups on anodes and the anodic exchange current density and the power output of MFCs, indicating an adverse effect of these functional groups on the electricity production of anodes. Results from this study will further our understanding on the microbial interaction with carbon‐based electrodes and provide an important guidance for the modification of anode materials for MFCs in future studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号