首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A low‐temperature ammonia synthesis process is required for on‐site synthesis. Barium‐doped calcium amide (Ba‐Ca(NH2)2) enhances the efficacy of ammonia synthesis mediated by Ru and Co by 2 orders of magnitude more than that of a conventional Ru catalyst at temperatures below 300 °C. Furthermore, the presented catalysts are superior to the wüstite‐based Fe catalyst, which is known as a highly active industrial catalyst at low temperatures and pressures. Nanosized Ru–Ba core–shell structures are self‐organized on the Ba‐Ca(NH2)2 support during H2 pretreatment, and the support material is simultaneously converted into a mesoporous structure with a high surface area (>100 m2 g−1). These self‐organized nanostructures account for the high catalytic performance in low‐temperature ammonia synthesis.  相似文献   

2.
The synthesis of a novel mesoporous covalent imine polymeric (MCIPs) material, involving simple Schiff‐base chemistry, is reported. This highly functionalised nitrogen‐rich material acts as a good support for immobilising CuII ions, exhibiting excellent catalytic activity in promoting the Chan–Lam cross‐coupling reaction between biologically active amines and arylboronic acids. The performance of this catalyst is also evident from its broad substrate scope, high stability, real heterogeneity, mild reaction conditions and reusability without loss of activity. The observed results will provide additional scope on the design and catalytic applications of this emerging class of materials.  相似文献   

3.
Catalytic direct dehydrogenation of methanol to formaldehyde was carried out over Ag‐SiO2‐MgO‐Al2O3 catalysts prepared by sol‐gel method. The optimal preparation mass fractions were determined as 8.3% MgO, 16.5% Al2O3 and 20% silver loading. Using this optimum catalyst, excellent activity and selectivity were obtained. The conversion of methanol and the selectivity to formaldehyde both reached 100%, which were much higher than other previously reported silver supported catalysts. Based on combined characterizations, such as X‐ray diffraction (XRD), scanning electronic microscopy (SEM), diffuse reflectance ultraviolet‐visible spectroscopy (UV‐Vis, DRS), nitrogen adsorption at low temperature, temperature programmed desorption of ammonia (NH3‐TPD), desorption of CO2 (CO2‐TPD), etc., the correlation of the catalytic performance to the structural properties of the Ag‐SiO2‐ MgO‐Al2O3 catalyst was discussed in detail. This perfect catalytic performance in the direct dehydrogenation of methanol to formaldehyde without any side‐products is attributed to its unique flower‐like structure with a surface area less than 1 m2/g, and the strong interactions between neutralized support and the nano‐sized Ag particles as active centers.  相似文献   

4.
We clicked a salen ligand onto a thiol-ethane bridged periodic mesoporous organosilica (Salen-PMO) using a photo-initiated thiol-ene click reaction. This process resulted in a covalently bonded salen ligand on the PMO material. The final BET surface area amounts 511 m2/g and the pore size diameter is approximately 7 nm. The functionalized PMO material showed an excellent carbon dioxide uptake capacity of 1.29 mmol/g at 273 K and 1 bar. More importantly, by coordinating a MoO22+ complex onto the Salen-PMO material, we obtained a heterogeneous catalyst with a good catalytic performance for the epoxidation of cyclohexene. The catalyst was highly reusable, as no decrease in its activity was observed for at least four runs (99% conversion). Finally, the metal-free Salen-PMO showed an exceptional catalytic performance in the cycloaddition of CO2 to epoxides. The obtained results clearly demonstrate the versatility of the Salen-PMO material not only as metal-free catalyst but also as a support material to anchor metal complexes for specific catalytic applications. With the same catalytic platform, we were able to firstly create epoxides out of alkenes, and subsequently turn these epoxides into cyclic carbonates, consuming CO2.  相似文献   

5.
An advanced supercapacitor material based on nitrogen‐doped porous graphitic carbon (NPGC) with high a surface area was synthesized by means of a simple coordination–pyrolysis combination process, in which tetraethyl orthosilicate (TEOS), nickel nitrate, and glucose were adopted as porogent, graphitic catalyst precursor, and carbon source, respectively. In addition, melamine was selected as a nitrogen source owing to its nitrogen‐enriched structure and the strong interaction between the amine groups and the glucose unit. A low‐temperature treatment resulted in the formation of a NPGC precursor by combination of the catalytic precursor, hydrolyzed TEOS, and the melamine–glucose unit. Following pyrolysis and removal of the catalyst and porogent, the NPGC material showed excellent electrical conductivity owing to its high crystallinity, a large Brunauer–Emmett–Teller surface area (SBET=1027 m2 g?1), and a high nitrogen level (7.72 wt %). The unusual microstructure of NPGC materials could provide electrochemical energy storage. The NPGC material, without the need for any conductive additives, showed excellent capacitive behavior (293 F g?1 at 1 A g?1), long‐term cycling stability, and high coulombic efficiency (>99.9 % over 5000 cycles) in KOH when used as an electrode. Notably, in a two‐electrode symmetric supercapacitor, NPGC energy densities as high as 8.1 and 47.5 Wh kg?1, at a high power density (10.5 kW kg?1), were achieved in 6 M KOH and 1 M Et4NBF4‐PC electrolytes, respectively. Thus, the synthesized NPGC material could be a highly promising electrode material for advanced supercapacitors and other conversion devices.  相似文献   

6.
Metal–organic frameworks (MOFs) including the UiO‐66 series show potential application in the adsorption and conversion of CO2. Herein, we report the first tetravalent metal‐based metal–organic gels constructed from ZrIV and 2‐aminoterephthalic acid (H2BDC‐NH2). The ZrBDC‐NH2 gel materials are based on UiO‐66‐NH2 nanoparticles and were easily prepared under mild conditions (80 °C for 4.5 h). The ZrBDC‐NH2‐1:1‐0.2 gel material has a high surface area (up to 1040 m2 g?1) and showed outstanding performance in CO2 adsorption (by using the dried material) and conversion (by using the wet gel) arising from the combined advantages of the gel and the UiO‐66‐NH2 MOF. The ZrBDC‐NH2‐1:1‐0.2 dried material showed 38 % higher capture capacity for CO2 at 298 K than microcrystalline UiO‐66‐NH2. It showed high ideal adsorbed solution theory selectivity (71.6 at 298 K) for a CO2/N2 gas mixture (molar ratio 15:85). Furthermore, the ZrBDC‐NH2‐1:1‐0.2 gel showed activity as a heterogeneous catalyst in the chemical fixation of CO2 and an excellent catalytic performance was achieved for the cycloaddition of atmospheric pressure of CO2 to epoxides at 373 K. In addition, the gel catalyst could be reused over multiple cycles with no considerable loss of catalytic activity.  相似文献   

7.
We have developed a highly active nanostructured iridium catalyst for anodes of proton exchange membrane (PEM) electrolysis. Clusters of nanosized crystallites are obtained by reducing surfactant‐stabilized IrCl3 in water‐free conditions. The catalyst shows a five‐fold higher activity towards oxygen evolution reaction (OER) than commercial Ir‐black. The improved kinetics of the catalyst are reflected in the high performance of the PEM electrolyzer (1 mgIr cm?2), showing an unparalleled low overpotential and negligible degradation. Our results demonstrate that this enhancement cannot be only attributed to increased surface area, but rather to the ligand effect and low coordinate sites resulting in a high turnover frequency (TOF). The catalyst developed herein sets a benchmark and a strategy for the development of ultra‐low loading catalyst layers for PEM electrolysis.  相似文献   

8.
A kind of clay-supported K-Co-Mo catalyst was prepared by a sol-gel method combined with incipient wetness impregnation. The catalyst structure was characterized by X-ray diffraction, N2 adsorption-desorption, H2 temperature-programmed reduction, and X-ray photoelectron spectroscopy techniques and its catalytic performance for higher alcohol syn-thesis from syngas was investigated. The active components has a high dispersion on the clay support surface. The increase of the Mo loading promoted reduction of M6+ but had no signi cant in fluence on the reduction of Mo4+ and Co2+ species. After reduction, a kind of lower state Moδ+ (1<δ<4) species was observed on the surface. Compared with the unsupported catalyst, the clay supported K-Co-Mo catalysts showed much higher catalytic performance for alcohol formation. The reason can be explained that the supported catalyst have a high active surface area and the mesoporous structure prolonged the residence time of intermediates for alcohol formation to some extent, which promoted the formation of higher alcohols. The high activity of the catalyst reduced at 773 K may be attributed to the high content of Moδ+ (1<δ<4) species on the surface, which was regarded as the active site for the adsorption of nondissociative CO and responsible for the alcohol formation.  相似文献   

9.
Cost‐effective and high‐performance electrocatalysts for oxygen reduction reactions (ORR) are needed for many energy storage and conversion devices. Here, we demonstrate that whey powder, a major by‐product in the dairy industry, can be used as a sustainable precursor to produce heteroatom doped carbon electrocatalysts for ORR. Rich N and S compounds in whey powders can generate abundant catalytic active sites. However, these sites are not easily accessible by reactants of ORR. A dual‐template method was used to create a hierarchically and interconnected porous structure with micropores created by ZnCl2 and large mesopores generated by fumed SiO2 particles. At the optimum mass ratio of whey power: ZnCl2 : SiO2 at 1 : 3 : 0.8, the resulting carbon material has a large specific surface area close to 2000 m2 g?1, containing 4.6 at.% of N with 39.7% as pyridinic N. This carbon material shows superior electrocatalytic activity for ORR, with an electron transfer number of 3.88 and a large kinetic limiting current density of 45.40 mA cm?2. They were employed as ORR catalysts to assemble primary zinc‐air batteries, which deliver a power density of 84.1 mW cm?2 and a specific capacity of 779.5 mAh g?1, outperforming batteries constructed using a commercial Pt/C catalyst. Our findings open new opportunities to use an abundant biomaterial, whey powder, to create high‐value‐added carbon electrocatalysts for emerging energy applications.  相似文献   

10.
An area‐selective atomic layer deposition (AS‐ALD) method is described to construct oxide nanotraps to anchor Pt nanoparticles (NPs) on Al2O3 supports. The as‐synthesized catalysts have exhibited outstanding room‐temperature CO oxidation activity, with a significantly lowered apparent activation energy (ca. 22.17 kJ mol−1) that is half that of pure Pt catalyst with the same loading. Furthermore, the structure shows excellent sintering resistance with the high catalytic activity retention up to 600 °C calcination. The key feature of the oxide nanotraps lies in its ability to anchor Pt NPs via strong metal–oxide interactions while still leaving active metal facets exposed. Our reported method for forming such oxide structure with nanotraps shows great potential for the simultaneous enhancement of thermal stability and activity of precious metal NPs.  相似文献   

11.
In heterogeneous catalysis, supports play a crucial role in modulating the geometric and electronic structure of the active metal phase for optimizing the catalytic performance. A γ‐Al2O3 nanosheet that contains 27 % pentacoordinate Al3+ sites can nicely disperse and stabilize raft‐like Pt‐Sn clusters as a result of strong interactions between metal and support. Consequently, there are strong electronic interactions between the Pt and Sn atoms, resulting in an increase in the electron density of the Pt sites. When used in the propane dehydrogenation reaction, this catalyst displayed an excellent specific activity for propylene formation with >99 % selectivity, and superior anti‐coking and anti‐sintering properties. Its exceptional ability to maintain the high activity and stability at ultrahigh space velocities further showed that the sheet construction of the catalyst facilitated the kinetic transfer process.  相似文献   

12.
《化学:亚洲杂志》2017,12(7):785-791
Cobalt oxide nanoparticles (size 2 to 3.5 nm) were successfully impregnated on an alumina–silica (mixed oxide) support through an experimentally viable and easily reproducible protocol. The prepared material was well characterized by XRD, HR‐TEM, BET surface area, EDX and XPS analyses. Porous alumina–silica having a high surface area served as a protective heterogeneous support on which the well‐dispersed Co3O4 nanoparticles served as an active catalytic species for the hydrazine‐mediated transfer hydrogenation of nitroarenes. About 2 mol % of the active catalyst in ethanol at 60 °C was adequate for a successful conversion. Moreover, transfer hydrogenation of nitroarenes by the catalyst was found to take place chemoselectively in the presence of other labile functional groups such as halide, alkene, nitrile, carbonyl, and ester. This inexpensive catalyst was also able to catalyze the reaction on a gram scale reaction and found to be robust and recyclable up to eight runs.  相似文献   

13.
To obtain noble metal catalysts with high efficiency, long‐term stability, and poison resistance, Pt and Pd are assembled in highly ordered and vertically aligned TiO2 nanotubes (NTs) by means of the pulsed‐current deposition (PCD) method with assistance of ultrasonication (UC). Here, Pd serves as a dispersant which prevents agglomeration of Pt. Thus Pt–Pd binary catalysts are embed into TiO2 NTs array under UC in sunken patterns of composite spherocrystals (Sps). Owing to this synthesis method and restriction by the NTs, the these catalysts show improved dispersion, more catalytically active sites, and higher surface area. This nanotubular metallic support material with good physical and chemical stability prevents catalyst loss and poisoning. Compared with monometallic Pt and Pd, the sunken‐structured Pt–Pd spherocrystal catalyst exhibits better catalytic activity and poison resistance in electrocatalytic methanol oxidation because of its excellent dispersion. The catalytic current density is enhanced by about 15 and 310 times relative to monometallic Pt and Pd, respectively. The poison resistance of the Pt–Pd catalyst was 1.5 times higher than that of Pt and Pd, and they show high electrochemical stability with a stable current enduring for more than 2100 s. Thus, the TiO2 NTs on a Ti substrate serve as an excellent support material for the loading and dispersion of noble metal catalysts.  相似文献   

14.
A new catalyst consisting of ionic liquid (IL)‐functionalized carbon nanotubes (CNTs) obtained through 1,3‐dipolar cycloaddition support‐enhanced electrocatalytic Pd nanoparticles (Pd@IL(Cl?)‐CNTs) was successfully fabricated and applied in direct ethanol alkaline fuel cells. The morphology, structure, component and stability of Pd@IL(Cl?)‐CNTs were systematic characterized by transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), Raman spectra, thermogravimetric analysis (TGA) and X‐ray diffraction (XRD). The new catalyst exhibited higher electrocatalytic activity, better tolerance and electrochemical stability than the Pd nanoparticles (NPs) immobilized on CNTs (Pd@CNTs), which was ascribed to the effects of the IL, larger electrochemically active surface area (ECSA), and greater processing performance. Cyclic voltammograms (CVs) at various scan rates illustrated that the oxidation behaviors of ethanol at all electrodes were controlled by diffusion processes. The investigation of the different counteranions demonstrated that the performance of the IL‐CNTs hybrid material was profoundly influenced by the subtly varied structures of the IL moiety. All the results indicated that the Pd@IL(Cl?)‐CNTs catalyst is an efficient anode catalyst, which has potential applications in direct ethanol fuel cells and the strategy of IL functionalization of CNTs could be available to prepare other carbonaceous carrier supports to enhance the dispersivity, stability, and catalytic performance of metal NPs as well.  相似文献   

15.
Fe/N/C is a promising non‐Pt electrocatalyst for the oxygen reduction reaction (ORR), but its catalytic activity is considerably inferior to that of Pt in acidic medium, the environment of polymer electrolyte membrane fuel cells (PEMFCs). An improved Fe/N/C catalyst (denoted as Fe/N/C‐SCN) derived from Fe(SCN)3, poly‐m‐phenylenediamine, and carbon black is presented. The advantage of using Fe(SCN)3 as iron source is that the obtained catalyst has a high level of S doping and high surface area, and thus exhibits excellent ORR activity (23 A g?1 at 0.80 V) in 0.1 M H2SO4 solution. When the Fe/N/C‐SCN was applied in a PEMFC as cathode catalyst, the maximal power density could exceed 1 W cm?2.  相似文献   

16.
Single‐atom noble metals on a catalyst support tend to migrate and agglomerate into nanoparticles owing to high surface free energy at elevated temperatures. Temperature‐induced structure reconstruction of a support can firmly anchor single‐atom Pt species to adapt to a high‐temperature environment. We used Mn3O4 as a restructurable support to load single‐atom Pt and further turned into single‐atom Pt‐on‐Mn2O3 catalyst via high‐temperature treatment, which is extremely stable under calcination conditions of 800 °C for 5 days in humid air. High‐valence Pt4+ with more covalent bonds on Mn2O3 are essential for anchoring isolated Pt atoms by strong interaction. An optimized catalyst formed by moderate H2O2 etching exhibits the best performance and excellent thermal stability of single‐atom Pt in high‐temperature CH4 oxidation on account of more exposed Pt atoms and strong Pt‐Mn2O3 interaction.  相似文献   

17.
The research of active and stable electrocatalysts toward liquid‐fuel oxidation reaction is of great significance for the large‐scale commercialization of fuel cells. Although extensive efforts have been devoted to pursuing high‐performance nanocatalysts for fuel cells, both the high cost and sluggish reaction kinetics have been two major drawbacks that limited its commercial development. In this regard, we demonstrated a facile solvothermal method for the syntheses of an advanced class of PtCu nanocatalysts with a unique pentangle‐like shape. By combining the merits of a highly active surface area as well as the synergistic and electronic effects, the as‐prepared pentangle‐like Pt3Cu nanocatalysts showed superior electrocatalytic activity towards ethylene glycol oxidation with a mass and specific activities of 5162.6 mA mg?1 and 9.7 mA cm?2, approximately 5.0 and 5.1 times higher than the commercial Pt/C, respectively. More significantly, the Pt3Cu pentangle also showed excellent long‐term stability with less activity decay and negligible changes in structure after 500 cycles, indicating another class of anode catalysts for fuel cells and beyond.  相似文献   

18.
《化学:亚洲杂志》2018,13(18):2714-2722
Currently, the base‐free aerobic oxidation of biomass‐derived 5‐hydroxymethylfurfural (HMF) to produce 2,5‐furandicarboxylic acid (FDCA) is attracting intense interest due to its prospects for the green, sustainable, and promising production of biomass‐based aromatic polymers. Herein, we have developed a new Pt catalyst supported on nitrogen‐doped‐carbon‐decorated CeO2 (NC‐CeO2) for the aerobic oxidation of HMF in water without the addition of any homogeneous base. It was demonstrated that the small‐sized Pt particles could be well dispersed on the surface of the hybrid NC‐CeO2 support, and the activity of the supported Pt catalyst depended strongly on the surface structure and properties of the catalysts. The as‐fabricated Pt/NC‐CeO2 catalyst, with abundant surface defects, enhanced basicity, and favorable electron‐deficient metallic Pt species, enabled an almost 100 % yield of FDCA in water with molecular oxygen (0.4 MPa) at 110 °C for 8 h without the addition of any homogeneous base, which is indicative of exceptional catalytic performance. Furthermore, this Pt/NC‐CeO2 catalyst also showed good stability and reusability owing to strong metal–support interactions. An understanding of the role of surface structural defects and basicity of the hybrid NC‐CeO2 support provides a basis for the rational design of high‐performance and stable supported metal catalysts with practical applications in various transformations of biomass‐derived compounds.  相似文献   

19.
Chicken feather‐derived high‐surface‐area porous activated carbon (CFAC) material was prepared using chemical activation. A new composite composed of Ru‐Pd nanoparticles supported on CFAC (Ru‐Pd@CFAC) has been prepared by microwave‐thermal reduction in the presence of the support. Characterization by XRD, Raman, BET, FE‐SEM/TEM, FT‐IR, TGA, XPS, HAADF‐STEM‐EDS, H2‐chemisorption, H2‐TPR, and ICP‐AES was used to analyze the catalyst. This catalyst is found to be efficient for the reduction of hexavalent chromium (CrVI), potassium ferricyanide (K3[Fe(CN)6]), 4‐nitrophenol (4‐NP), and pendimethalin (PDM), at room temperature, and remains stable, even after several repeated runs. Moreover, it showed excellent catalytic activity compared with the monometallic counterparts.  相似文献   

20.
Embedding cubane [M4(OH)4] (M=Ni, Co) clusters within the matrix of metal–organic frameworks (MOFs) is a strategy to develop materials with unprecedented synergistic properties. Herein, a new material type based on the pore‐space partition of the cubic primitive minimal‐surface net (MOF‐14‐type) has been realized. CTGU‐15 made from the [Ni4(OH)4] cluster not only has very high BET surface area (3537 m2 g?1), but also exhibits bi‐microporous features with well‐defined micropores at 0.86 nm and 1.51 nm. Furthermore, CTGU‐15 is stable even under high pH (0.1 m KOH), making it well suited for methanol oxidation in basic medium. The optimal hybrid catalyst KB&CTGU‐15 (1:2) made from ketjen black (KB) and CTGU‐15 exhibits an outstanding performance with a high mass specific peak current of 527 mA mg?1 and excellent peak current density (29.8 mA cm?2) at low potential (0.6 V). The isostructural cobalt structure (CTGU‐16) has also been synthesized, further expanding the application potential of this material type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号