首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
New donor–π–acceptor (D–π–A) type conjugated copolymers, poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(4‐octylthiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐tTz), and poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(6‐octylthieno[3,2‐b]thiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐ttTz) were synthesized and characterized with the aim of investigating their potential applicability to organic photovoltaic active materials. While copolymer PBDT‐tTz showed a zigzagged non‐linear structure by thiophene π‐bridges, PBDT‐ttTz had a linear molecular structure with thieno[3,2‐b]thiophene π‐bridges. The optical, electrochemical, morphological, and photovoltaic properties of PBDT‐tTz and PBDT‐ttTz were systematically investigated. Furthermore, bulk heterojunction photovoltaic devices were fabricated by using the synthesized polymers as p‐type donors and [6,6]‐phenyl‐C71‐butyric acid methyl ester as an n‐type acceptor. PBDT‐ttTz showed a high power conversion efficiency (PCE) of 5.21% as a result of the extended conjugation arising from the thienothiophene π‐bridges and enhanced molecular ordering in the film state, while PBDT‐tTz showed a relatively lower PCE of 2.92% under AM 1.5 G illumination (100 mW/cm2). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1978–1988  相似文献   

2.
Herein, we present a new synthetic approach to achieve selective supramolecular transformations and construct different interlocked metallacycles featuring a π‐electron‐deficient thiazolo[5,4‐d]thiazole‐derived ligand. We demonstrate that the formation of mono‐rings, interlocked rings ([2]catenanes) and Borromean rings can be controlled by adjusting the length of the binuclear half‐sandwich RhIII and IrIII building blocks. Furthermore, a concentration effect or D‐A stacking interaction between the pyrene guest and the thiazolo[5,4‐d]thiazole‐based ligand promotes a unique and reversible conversion between catenane structures and metalla‐rectangles. The synthetic results are supported by single‐crystal X‐ray diffraction analysis.  相似文献   

3.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

4.
In catena‐poly[[dichloridocobalt(II)]‐μ‐(1,1′‐dimethyl‐4,4′‐bipyrazole‐κ2N2:N2′)], [CoCl2(C8H10N4)]n, (1), two independent bipyrazole ligands (Me2bpz) are situated across centres of inversion and in tetraaquabis(1,1′‐dimethyl‐4,4′‐bipyrazole‐κN2)cobalt(II) dichloride–1,1′‐dimethyl‐4,4′‐bipyrazole–water (1/2/2), [Co(C8H10N4)2(H2O)4]Cl2·2C8H10N4·2H2O, (2), the Co2+ cation lies on an inversion centre and two noncoordinated Me2bpz molecules are also situated across centres of inversion. The compounds are the first complexes involving N,N′‐disubstituted 4,4′‐bipyrazole tectons. They reveal a relatively poor coordination ability of the ligand, resulting in a Co–pyrazole coordination ratio of only 1:2. Compound (1) adopts a zigzag chain structure with bitopic Me2bpz links between tetrahedral CoII ions. Interchain interactions occur by means of very weak C—H...Cl hydrogen bonding. Complex (2) comprises discrete octahedral trans‐[Co(Me2bpz)2(H2O)4]2+ cations formed by monodentate Me2bpz ligands. Two equivalents of additional noncoordinated Me2bpz tectons are important as `second‐sphere ligands' connecting the cations by means of relatively strong O—H...N hydrogen bonding with generation of doubly interpenetrated pcu (α‐Po) frameworks. Noncoordinated chloride anions and solvent water molecules afford hydrogen‐bonded [(Cl)2(H2O)2] rhombs, which establish topological links between the above frameworks, producing a rare eight‐coordinated uninodal net of {424.5.63} ( ilc ) topology.  相似文献   

5.
A ligand containing the thiazolo[5,4‐d]thiazole (TzTz) core (acceptor) with terminal triarylamine moieties (donors), N,N′‐(thiazolo[5,4‐d]thiazole‐2,5‐diylbis(4,1‐phenylene))bis(N‐(pyridine‐4‐yl)pyridin‐4‐amine ( 1 ), was designed as a donor–acceptor system for incorporation into electronically active metal–organic frameworks (MOFs). The capacity for the ligand to undergo multiple sequential oxidation and reduction processes was examined using UV/Vis‐near‐infrared spectroelectrochemistry (UV/Vis‐NIR SEC) in combination with DFT calculations. The delocalized nature of the highest occupied molecular orbital (HOMO) was found to inhibit charge‐transfer interactions between the terminal triarylamine moieties upon oxidation, whereas radical species localized on the TzTz core were formed upon reduction. Conversion of 1 to diamagnetic 2+ and 4+ species resulted in marked changes in the emission spectra. Incorporation of this highly delocalized multi‐electron donor–acceptor ligand into a new two‐dimensional MOF, [Zn(NO3)2( 1 )] ( 2 ), resulted in an inhibition of the oxidation processes, but retention of the reduction capability of 1 . Changes in the electrochemistry of 1 upon integration into 2 are broadly consistent with the geometric and electronic constraints enforced by ligation.  相似文献   

6.
Two novel thiazolo[5,4‐d]thiazole containing donor–acceptor type alternating copolymers, poly[2‐(5‐(2‐decyl‐2H‐benzo[d][1,2,3]triazol‐4‐yl)thiophen‐2‐yl)‐5‐(thiophen‐2‐yl)thiazolo[5,4‐d]thiazole] (BTzTh) and poly[2‐(5‐(2‐decyl‐2H‐benzo[d][1,2,3]triazol‐4‐yl)furan‐2‐yl)‐5‐(furan‐2‐yl)thiazolo[5,4‐d]thiazole] (BTzFr) were synthesized by Stille coupling polymerization and their electrochemical and electrochromic properties were explored. Electrochemical activities of the spray‐casted polymer films were determined by cyclic voltammetry. To evaluate the effect of thiophene and furan moieties on the optical properties of the copolymers, spectroelectrochemistry studies were performed. To examine the switching abilities, copolymer films were subjected to a double potential step chronoamperometry in their local maximum absorptions. Both thiazolothiazole‐containing copolymers showed multichromic properties with low band‐gap values 1.7 and 1.9 eV for BTzTh and BTzFr, respectively. The decent electrochromical properties together with solution processability make them important candidates for electrochromic applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3901–3906  相似文献   

7.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

8.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

9.
Two conjugated main‐chain polymers consisting of heteroarene‐fused π‐conjuagted donor moiety alternating with 4,7‐bis(5‐bromo‐4‐octylthiophen‐2‐yl)benzo[c][1,2,5]thiadiazole (P1) or 2,5‐bis(5‐bromo‐4‐octylthiophen‐2‐yl) thiazolo[5,4‐d]thiazole (P2) units have been synthesized. They are intrinsically amorphous in nature and do not exhibit crystalline melting temperatures during thermal analysis. The effect of the fused rings on the thermal, optical, electrochemical, charge transport, and photovoltaic properties of these polymers has been investigated. The polymer (P1) containing 4,7‐bis(5‐bromo‐4‐octylthiophen‐2‐yl)benzo[c][1,2,5] thiadiazole has a broad absorption extending from 300 to 600 nm with optical bandgaps as low as 2.02 eV. The HOMO levels (5.42 to 5.29 eV) are more sensitive to the choice of acceptor. The polymers were employed to fabricate organic photovoltaic cells with methanofullerene [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM). As a result, the polymer solar cell device containing P1 had the best preliminary results with an open‐circuit voltage of 0.61 V, a short‐circuit current density of 6.19 mA/cm2, and a fill factor of 0.32, offering an overall power conversion efficiency of 1.21%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
In DMSO‐solution 2‐amino‐4H‐thiazolo[5,4‐b]indole is converted into a complex mixture of colored products. The three major conversion end‐products, of which two are inhibitors of protein tyrosine phos‐phatases (PTPs), were isolated by chromatographic methods and their structures characterized by spectro‐scopic analysis, including NMR and MS combined with computer assisted structure elucidation, and, finally, confirmed by independent chemical synthesis. Synthesis of 2‐amino‐4H‐thiazolo[5,4‐b]indole as well as its N‐acetyl derivatives prepared from either oxindole or 2‐bromo‐1‐(2‐nitro‐phenyl)ethanone is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号