首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A simple, sensitive and specific liquid chromatographic method with UV detection (228 nm) was developed for the simultaneous estimation of rosiglitazone and glimepride in human plasma. Rosiglitazone and glimepride were extracted from plasma using liquid–liquid extraction. Separation was achieved with an RP C18 Column using a mixture of phosphate buffer (50 mM) with octane sulfonic acid (10 mM), methanol and acetonitrile as a mobile phase (55:10:35, v/v). pH was adjusted to 7.0. Amlodipine was used as an internal standard (IS). LOD of the method was found to be 20 ng mL?1 for both drugs. Results were linear over the studied range 40.994–2007.556 ng mL?1 for rosiglitazone (r ≥ 0.99) and 41.066–2094.84 ng mL?1 for glimepride( r ≥ 0.99). The method was found to be simple, selective, precise and reproducible for the estimation of both drugs from spiked human plasma.  相似文献   

2.
A new LC method has been developed and validated for the direct determination of bupropion and its main metabolite, hydroxybupropion in human plasma. Plasma samples were analyzed after a simple, one step protein precipitation with trichloroacetic acid using a C8 column and mobile phase, consisting of methanol/acetonitrile/phosphate buffer (10 mM, pH 3.0) (40:10:50, v/v/v) and 20 mM 1-heptane sulfonic acid sodium salt with carbamazepine as the internal standard. UV detection was performed at 214 and 254 nm. The method was validated over the concentration range of 60–2,400 and 150–4,700 ng mL?1 for bupropion and hydroxybupropion, respectively. The intra- and inter-day assay variability was less than 15% for the two analytes. Limit of detection values were 24.8 and 63.4 ng mL?1 for bupropion and hydroxybupropion, respectively. The method developed was applied to quantification of bupropion and hydroxybupropion in human plasma.  相似文献   

3.
A high-performance liquid chromatographic (HPLC) method and a cyclodextrin-modified micellar electrokinetic chromatographic (CD-MEKC) method were developed to separate and determine oleanolic acid (OA) and ursolic acid (UA) in Prunella vulgaris. HPLC separations were carried out on a Hedera ODS C18 column with methanol -H2O- acetic acid (85:15:0.3, v/v/v) as mobile phase at a flow-rate of 0.8 ml min?1. CD-MEKC analysis was performed on a CL1030 capillary electrophoresis system with a 6% (v/v) methanol solution (pH = 9.0) containing 10 mM disodium tetraborate, 10 mM sodium dihydrogen phosphate, 50 mM sodium dodecylsulfate (SDS), 15 mM 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CD) as background electrolyte. The analytical results of HPLC and CD-MEKC were compared with each other. CD-MEKC has better analytical efficiency for two components, and the analytical time (15 min) was shorter than that of HPLC (35 min).  相似文献   

4.
Cefuroxime is a broad-spectrum second-generation bactericidal cephalosporin antibiotic active against β-lactamase-producing strains. Anti-cefuroxime, the geometric isomer of cefuroxime, might be present in cefuroxime dosage forms as a process-related impurity and possible degradation product. In the work discussed in this paper a precise and sensitive micellar liquid chromatographic (MLC) method for stability testing of cefuroxime axetil and anti-cefuroxime axetil in tablets, using benzoic acid as internal standard, was developed and validated. MLC was performed on an XTerra C18 reversed-phase column at 50 °C with 8:92 (v/v) acetonitrile–20 mM sodium dodecyl sulphate, pH 2.5, as mobile phase at a flow rate of 1.5 mL min?1. Detection was at 280 nm. Under these conditions the retention time and retention factor were of 6.65 min and 4.57, respectively, for cefuroxime axetil and 11.45 min and 8.59, respectively, for anti-cefuroxime axetil, indicating that the compounds were well separated. RSD values for quantification of cefuroxime axetil and anti-cefuroxime axetil were 0.39 and 1.7%, respectively, indicating the precision of the MLC method was good. The method is sensitive—LOD=0.5 μg mL?1 and LOQ=1.5 μg mL?1 for anti-cefuroxime axetil—and reproducible, with good recovery values.  相似文献   

5.
The aim of the present study was to develop a fast, sensitive and reliable method for rapid screening of cephalosporin injectable dosage forms namely ceftazidime and ceftizoxime to the detection of counterfeit and substandard drugs that might be illegally commercialized. Ceftazidime, ceftizoxime and cefixime (IS) were separated in a X-Terra RP-18 column (250 × 4.60 mm ID × 5 ??) and DAD detector set at 290 and 260 nm. The mobile phase consisted of a mixture of methanol:water 20:80 (v/v) at a flow rate of 1.0 mL min?1. Additionally, in order to find the optimum pH value of separation the pK a values of studied compounds were determined by using two different methodologies. Aqueous pK a values of studied compounds have been determined by UV-spectrophotometry and liquid chromatography were used for the determination and direct characterization of the dissociation constants by using the dependence of the capacity factor on the pH of the mobile phase in 20% (v/v) methanol?Cwater binary mixture in which separation was performed. The pH of the mobile phase was adjusted with 25 mM H3PO4 to 3.2. The method was shown to be linear, sensible, accurate, and reproducible over the range of analysis and it can be used to pharmaceutical formulations containing a single active ingredient within a short analysis time.  相似文献   

6.
K&#;l&#;&#;  B.  &#;zden  T.  Toptan  S.  &#;zilhan  S. 《Chromatographia》2007,66(1):129-133

A specific and sensitive liquid chromatography-electrospray ionization tandem mass spectrometry method was developed for the determination of zolmitriptan and N-desmethylzolmitriptan in human plasma. The analytes and the internal standard (IS) paroxetine were extracted by liquid–liquid extraction with a mixture of saturated ethyl acetate:dichloromethane (4:1) and were separated using an isocratic mobile phase on a XTerra RP18 column. The mobile phase used was acetonitrile: 5 mM ammonium acetate: formic acid (50:50:0.053, v/v/v). Zolmitriptan and N-desmethylzolmitriptan in a range of 0.25–20 ng mL−1 were easily quantified. The validated method can be applied to pharmacokinetic and bioequivalence studies.

  相似文献   

7.
A. E. Tyrpenou  G. Rigos 《Chromatographia》2004,60(11-12):657-661
A high-performance liquid chromatographic method for the determination of oxolinic acid (OA) residues in muscle tissue and plasma of the cultured fish gilthead seabream (Sparus aurata L.), is described. OA was extracted with ethyl acetate and after centrifugation the combined extracts were evaporated. To the remaining residue 1 mL of the mobile phase was added and the extract was partitioned with n-pentane which then was rejected by aspiration. OA was chromatographed on a Zorbax®SB-C18 column at 50oC and detected by fluorescence detection at λex 327 nm and λem 369 nm. The mobile phase was a mixture of 0.1% trifluoroacetic acid (v/v) pH 2.0 and acetonitrile-methanol 3:2 (v/v) in a combination of 50:50 (v/v) and a flow rate of 1.0 mL min?1, delivered isocratically. Method mean recovery (R%) achieved was 73.7 ± 4.4% (mean ± SD) for blank fortified samples (n=4) range at 50, 100 and 200 μg kg?1 with a RSD=3.3%. The limit of detection (LOD) was 2.0 μg kg?1 oxolinic acid in muscle tissue and plasma and the limit of quantification (LOQ) was 5.0 μg kg?1. The method is fast and suitable to be used with safety and accuracy for the control of OA residues in cultured seabreams and a trained analyst could carry out ready for chromatography more than 50 samples per working day.  相似文献   

8.
Yeniceli  Duygu  Dogrukol-Ak  Dilek 《Chromatographia》2009,70(11):1703-1708

A new LC method has been developed and validated for the direct determination of bupropion and its main metabolite, hydroxybupropion in human plasma. Plasma samples were analyzed after a simple, one step protein precipitation with trichloroacetic acid using a C8 column and mobile phase, consisting of methanol/acetonitrile/phosphate buffer (10 mM, pH 3.0) (40:10:50, v/v/v) and 20 mM 1-heptane sulfonic acid sodium salt with carbamazepine as the internal standard. UV detection was performed at 214 and 254 nm. The method was validated over the concentration range of 60–2,400 and 150–4,700 ng mL−1 for bupropion and hydroxybupropion, respectively. The intra- and inter-day assay variability was less than 15% for the two analytes. Limit of detection values were 24.8 and 63.4 ng mL−1 for bupropion and hydroxybupropion, respectively. The method developed was applied to quantification of bupropion and hydroxybupropion in human plasma.

  相似文献   

9.
A stability-indicating LC method was developed for the simultaneous determination of ibuprofen and diphenhydramine citrate in pharmaceutical dosage forms. The chromatographic separation was achieved on an Inertsil ODS 3V, 150 × 4.6 mm, 5 μm, column. The mobile phase contained a mixture of 50 mM potassium dihydrogen phosphate buffer:acetonitrile:triethylamine:glacial acetic acid (55:45:0.2:0.2, v/v/v/v). This method allowed the determination of 2.85–9.14 mg mL?1 of ibuprofen and 0.54–1.73 mg mL?1 of diphenhydramine citrate, in a diluent consisting of pH 7.2, 50 mM potassium dihydrogen phosphate buffer:acetonitrile (40:60, v/v). The flow rate was 1.2 mL min?1 and the detection wavelength was 260 nm. The limit of detection for ibuprofen and diphenhydramine citrate was 1.72 and 0.54 μg mL?1 and the limit of quantification was 5.73 and 1.64 μg mL?1, respectively. This method was validated for accuracy, precision and linearity. The method was also found to be stability indicating.  相似文献   

10.
A simple reversed-phase liquid chromatographic method with ultraviolet detector (378 nm) for the determination of nitrovin in feeds was improved and validated. The mobile phase was a mixture of acetonitrile and 0.1% formic acid solution (v/v) in the ratio of 50:50 (v/v), and the flow rate was set at 1.2 mL min?1. The extraction solution was a mixture of dimethyl formamide, acetonitrile and methanol (50:25:25, v/v), the sample was cleaned-up with reversed-phase solid phase extraction cartridge. The standard nitrovin was purified with crude nitrovin product by ethylene glycol monoethyl ether and identified by elemental analyzer. The limit of detection was 0.05 mg kg?1 and the limit of quatification was 0.2 mg kg?1 in feeds. The assay had satisfactory selectivity, recovery, linearity and precise repeatability and trueness.  相似文献   

11.
A new, simple, rapid, sensitive and specific isocratic RP–LC–UV method was developed and validated for the determination of ondansetron in pharmaceutical dosage forms of orally disintegrating tablets, oral solution and injection. The LC separation was achieved on a Hypersil C4 column (250 × 4.6 mm, 5 μm) using a mobile phase of 50 mM potassium dihydrogen phosphate anhydrous adjusted to pH 3.5 with orthophosphoric acid and acetonitrile (30:70, v/v) at a flow rate of 1.0 mL min?1 and UV detection at 310 nm. The method was validated for specificity, linearity, precision, accuracy, limit of quantification, limit of detection, robustness and solution stability. The calibration curve was linear over a concentration range of 100–1,000 ng mL?1 (r 2  = 0.9996) with limit of detection and limit of quantification 50 and 100 ng mL?1, respectively. The intra-day and inter-day precision and accuracy were between 0.79 and 2.37% and ?0.64 and 1.65%, respectively. The method was successfully applied for analysis of ondansetron in the presence of excipients in commercially available pharmaceutical dosage forms.  相似文献   

12.
Simple, sensitive, selective, precise, and stability-indicating thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) methods for the determination of mosapride and pantoprazole in pharmaceutical tablets were developed and validated as per the International Conference on Harmonization guidelines. The TLC method employs aluminum TLC plates precoated with silica gel 60F254 as the stationary phase and ethyl acetate/methanol/toluene (4:1:2, v/v/v) as the mobile phase to give compact spots for mosapride (R f 0.73) and pantoprazole (R f 0.45) separated from their degradation products; the chromatogram was scanned at 276 nm. The HPLC method utilizes a C18 column and a mobile phase consisting of acetonitrile/methanol/20 mM ammonium acetate (4:2:4, v/v/v) at a flow rate of 1.0 mL min?1 for the separation of mosapride (t R 11.4) and pantoprazole (t R 4.4) from their degradation products. Quantitation was achieved with UV detection at 280 nm. The same HPLC method was successfully used in performing calibrations in lower concentration ranges for both drugs in human plasma using ezetimibe as internal standard. The methods were validated in terms of accuracy, precision, linearity, limits of detection, and limits of quantification. Mosapride and pantoprazole were exposed to acid hydrolysis and then analyzed by the proposed methods. As the methods could effectively separate the drugs from their degradation products, these techniques can be employed as stability-indicating methods that have been successively applied to pharmaceutical formulations without interference from the excipients. Moreover the HPLC method was successfully used in the determination of both drugs in spiked human plasma.  相似文献   

13.
The purpose of this article was to develop a rapid and robust LC–MS–MS method for quantifying shikonin and deoxyshikonin simultaneously in rat plasma using emodin as internal standard. The LC system consisted of an Agilent ZORBAX SB-C18 (1.8 μm, 250 × 4.6 mm, 20 °C) column. Elution with an isocratic mobile phase consisted of methanol/10 mM ammonium acetate in water/acetonitrile containing 0.05% formic acid (45:10:45, v/v/v) at a flow rate of 0.8 mL min?1 yielded sharp, high-resolved peaks within 12 min. The lower limits of quantitation were 0.5 ng mL?1 for shikonin, and 8 ng mL?1 for deoxyshikonin. Correlation coefficient (r) values for the linear range of two analytes were greater than 0.99. Assay precision was <13% and accuracy was 87–99%. This newly developed method was used to the pharmacokinetic studies of the shikonin analogues in rats after intravenous administration (n = 4).  相似文献   

14.
A simple, fast and sensitive LC?CMS/MS method was developed and validated for the simultaneous determination of the concentrations of temsirolimus and its major metabolite, sirolimus, in human whole blood. The blood sample (100???L) after adding temsirolimus-d7 and sirolimus-d3 internal standards was precipitated with 0.200?mL of methanol/0.300?M zinc sulfate (70/30, v/v), then analyzed by a Shimatzu LC system coupled to a Sciex API-5000 mass spectrometer. The chromatographic separation was carried out on a BDS Hypersil C8 column (50?×?3.0?mm, 5???m) at 50?°C with a mobile phase composed of methanol/water/formic acid (72/28/0.1) (v/v/v) containing 2.50?mM ammonium acetate. Mass spectrometric detection was performed using electrospray positive ionization with multiple reaction monitoring mode. This method was validated from 0.250 to 100?ng?mL?1 for temsirolimus and 0.100 to 40.0?ng?mL?1 for sirolimus. The lower limits of quantitation were 0.25?ng?mL?1 for temsirolimus and 0.1?ng?mL?1 for sirolimus. The intra-day and inter-day precisions (CV?%) of spiked quality control (QC) samples were less than 10.4 and 9.6?%, respectively. The accuracies as determined by the relative error for QC samples were less than 12.1?% for intra-day and 7.3?% for inter-day. No significant matrix effect was observed. This method has been successfully applied to analyze clinical pharmacokinetic study samples. The assay reproducibility was also demonstrated by using incurred samples.  相似文献   

15.
A sensitive, precise and simple LC method for the simultaneous quantification of aliskiren, valsartan and sitagliptin in rat plasma has been developed and validated. The chromatographic separation was achieved on a C18 column (250 mm × 4.6 mm, 5 μm) maintained at room temperature, using isocratic elution with acetonitrile/20 mM ammonium acetate buffer (35:65, v/v), pH adjusted to 4.85 with glacial acetic acid, and detected using a fluorescence detector. Liquid–liquid extraction of the aliskiren, valsartan and sitagliptin from the rat plasma with t-butyl methyl ether resulted in their high recoveries. LC calibration curves based on the extracts from the rat plasma were linear in the range of 25–2,000 ng mL?1 for aliskiren and sitagliptin and 50–4,000 ng mL?1 for valsartan. The limits of quantification were 25 ng mL?1 for aliskiren and sitagliptin and 50 ng mL?1 for valsartan. The precision and accuracy of the method were well within the generally accepted criteria for biomedical analysis. The described method was successfully applied to study the pharmacokinetics of aliskiren, valsartan and sitagliptin following oral administration, individually as well as in combination in Sprague–Dawley rats. The results of the study implied the occurrence of pharmacokinetic interaction upon the co-administration of these three drugs.  相似文献   

16.
A stability-indicating HPLC method has been developed and subsequently validated for the simultaneous determination of domperidone and pantoprazole in commercial tablets. The proposed HPLC method utilizes Phenomenex® Gemini C18 column (150 mm × 4.6 mm i.d., 5 μm) and mobile phase consisting of methanol-acetonitrile-20 mM dipotassium hydrogen phosphate and phosphoric acid buffer pH 7.0 (20:33:47, v/v/v) at a flow rate of 1.19 mL min?1. Quantitation was achieved with UV detection at 285 nm based on peak area with linear calibration curves at concentration ranges 0.5–5.0 μg mL?1 for domperidone and 1.0–10 μg mL?1 for pantoprazole (R 2 > 0.999 for both drugs). The method was validated in terms of accuracy, precision, linearity, limits of detection, limits of quantitation and robustness. This method has been successively applied to pharmaceutical formulation and no interference from the tablet excipients was found. Domperidone, pantoprazole and their combination drug product were exposed to acid, base and neutral hydrolysis, oxidation, dry heat and photolytic stress conditions and the stressed samples were analyzed by the proposed method. As the proposed method could effectively separate the drug from its degradation products, it can be employed as stability-indicating method for the determination of instability of these drugs in bulk and commercial products.  相似文献   

17.

A simple, sensitive and specific liquid chromatographic method with UV detection (228 nm) was developed for the simultaneous estimation of rosiglitazone and glimepride in human plasma. Rosiglitazone and glimepride were extracted from plasma using liquid–liquid extraction. Separation was achieved with an RP C18 Column using a mixture of phosphate buffer (50 mM) with octane sulfonic acid (10 mM), methanol and acetonitrile as a mobile phase (55:10:35, v/v). pH was adjusted to 7.0. Amlodipine was used as an internal standard (IS). LOD of the method was found to be 20 ng mL−1 for both drugs. Results were linear over the studied range 40.994–2007.556 ng mL−1 for rosiglitazone (r ≥ 0.99) and 41.066–2094.84 ng mL−1 for glimepride( r ≥ 0.99). The method was found to be simple, selective, precise and reproducible for the estimation of both drugs from spiked human plasma.

  相似文献   

18.
A sensitive and specific assay based on liquid chromatography with ultraviolet detection was developed for the simultaneous determination of pirfenidone (PFD), a novel antifibrotic agent, and its carboxylic acid metabolite in human plasma. The carboxylic acid metabolite was further identified by mass spectrometric analysis. PFD, its carboxylic acid metabolite and the internal standard methyl-p-aminobenzoate were extracted from plasma by a simple one-step liquid-liquid extraction with ethyl acetate and subsequently separated on a Zorbax SB-C18 column with a mobile phase of trifluoroacetic acid–triethylamine–acetonitrile–water (0.1:0.15:28:71.75, v/v/v/v) and monitored at 314 nm. Extraction recovery was over 70% in plasma. The calibration curves were linear over the concentration range of 0.05–25 μg mL?1. The limit of detection (LOD) and lower limit of quantitation (LLOQ) in human plasma were 10 and 50 ng mL?1, respectively. Intra- and inter-assay precision of the method were within 8.6%. The accuracy as expressed by the bias ranged between ?4.5 and 4.0%. The method was successfully applied to determine pharmacokinetic parameters of PFD and its carboxylic acid metabolite after a single oral dose of 200 mg of PFD in healthy volunteers.  相似文献   

19.
A simple and sensitive LC method for the quantitative determination of gemfibrozil in human plasma samples is described. Mometasone furoate was used as the internal standard. Plasma samples were pretreated by protein precipitation using methanol. Separation was performed at 40 °C on a YMC® ODS-A reverse phase column (5 μm particle size, 150 mm × 4.6 mm i.d.) using 0.2% (v/v) triethylamine in water (adjusting to pH 4.0 with phosphoric acid) and acetonitrile (45:55, v/v) as mobile phase which was delivered at 1.5 mL min?1. Ultraviolet detection was performed at 230 nm. The linear concentration range for gemfibrozil was 0.25–50 μg mL?1. The detection limit of this method was 0.1 μg mL?1. Intra- and inter-assay RSD ranged from 0.63 to 2.04% and 1.37 to 4.27%, respectively. The method was sensitive, simple and repeatable enough to be used in pharmacokinetic studies.  相似文献   

20.
A novel, sensitive, stability indicating RP-LC method has been developed for the quantitative determination of deferasirox, its related impurities in both bulk drugs and pharmaceutical dosage forms. Efficient chromatographic separation was achieved on a C18 stationary phase with simple mobile phase combination delivered in an isocratic mode and quantitation was by ultraviolet detection at 245 nm. The mobile phase consisted of buffer, acetonitrile and methanol (50:45:5, v/v) delivered at a flow rate of 1.0 mL min?1. Buffer consisted of 10 mM potassium dihydrogen orthophosphate monohydrate, pH adjusted to 3.0 by using orthophosphoric acid. In the developed LC method the resolution (R s ) between deferasirox and its four potential impurities was found to be greater than 2.0. Regression analysis showed an r value (correlation coefficient) greater than 0.999 for deferasirox and its four impurities. This method was capable to detect all four impurities of deferasirox at a level of 0.002% with respect to test concentration of 0.5 mg mL?1 for a 10 μL injection volume. The inter- and intra-day precision values for all four impurities and for deferasirox was found to be within 2.0% RSD. The method showed good and consistent recoveries for deferasirox in bulk drugs (98.3–101.1%), pharmaceutical dosage forms (100.2–103.1%) and for its all the four impurities (99.7–102.1%). The test solution was found to be stable in methanol for 48 h. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. Considerable degradation was found to occur in acid stress hydrolysis. The stress samples were assayed against a qualified reference standard and the mass balance was found close to 99.95%. The developed RP-LC method was validated with respect to linearity, accuracy, precision and robustness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号