首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the modification of natural layered montmorillonite (MMT) clay by cetyltrimethylammonium bromide (CTAB) cations on the structure and optical properties of the composite material based on this mineral (4.5%mass) and a nematic liquid crystal (LC), 4-pentyl-4'-cyanobiphenyl (5CB), have been investigated. As shown by small-angle X-ray diffraction and infrared (IR) spectroscopy experiments, this modification results in a significant expansion of the interplane spaces in the MMT nanoparticles and a considerable growth of their surface affinity to the 5CB molecules, which allows the LC molecules to penetrate into the MMT galleries and additionally expand these galleries. According to IR studies, this heterosystem possesses van der Waals interactions between its components on the phase separation boundary and, as a result, orientation alignment of the molecules in the near-surface layers occurs. These interactions specify the electro-optical properties of the composite. When an electric field is applied to a system, the light transmittance of the material increases due to the induced orientation of the LC dimers. This LC ordering remains even after the voltage is shut off, i.e. the system shows an electro-optical memory effect.  相似文献   

2.
We have investigated the oscillatory behavior of the nematic director for 4-pentyl-4'-cyanobiphenyl (5CB) when it is subjected to a static magnetic field and a sinusoidal electric field. In these experiments the two fields were inclined at about 50 degrees and the frequency of the electric field was varied from several hertz to approximately 1000 Hz. The director orientation was measured using time-resolved deuterium NMR spectroscopy since this has the advantage of being able to determine the state of director alignment in the sample. In fact, for all of the frequencies studied the director is found to remain uniformly aligned. Since the diamagnetic and dielectric anisotropies are both positive the director oscillates in the plane formed by the two fields. These oscillations were observed to continue for many cycles, indicating that the coherence in the director orientation was not lost during this motion. The maximum and minimum angles made by the director with the magnetic field were determined, as a function of frequency, from the NMR spectrum averaged over many thousand cycles of the oscillations. At low frequencies (several hertz) these limiting angles are essentially independent of frequency but as the frequency increases the two angles approach each other and become equal at high frequencies, typically 1000 Hz. Our results are well explained by a hydrodynamic theory in which the sinusoidal time dependence of the electric field is included in the torque-balance equation. This analysis also shows that, for a range of frequencies between the high and low limits, these NMR experiments can give dynamic as well as static information concerning the nematic phase.  相似文献   

3.
Photoluminescence (PL) of a heterocomposite, consisting of the nematic liquid crystal (LC) 4-pentyl-4´-cyanobiphenyl (5CB) and anisometric nanoparticles of montmorillonite (MMT) clay, modified by cetyltrimethylammonium bromide (CTAB) has been investigated at 4.2 and 300 K. The incorporation of this organoclay (B4) to 5CB decreases the emission intensity by 7–8 times due to efficient resonant quenching of the exciting energy by the organoclay. The spectrum shifts to a long-wave region, with this effect being considerably larger at low temperatures. Graphical separation of complex bands, corresponding to the bulk 5CB and 5СВ?+?В4 heterosystem at both temperatures revealed that the presence of the organoclay resulted in a significant growth of LC dimer quantity, shifting spectra towards longer wavelengths. Changes in the 5CB luminescence under organoclay influence can be explained by quite strong interphase interactions specified earlier by infrared spectroscopy between the MMT surface and LC, and by a realisation of more flat conformations of 5CB molecules. Confinement effects prevent full crystallisation of 5CB in the 5CB?+?B4 composite, and LC dimer structures located in the organoclay near-surface layers on the outer surface of the nanoparticles and inside its galleries remain in a larger amount, at low temperature, when compared to bulk 5CB. The remaining LC crystallises and photoluminescence from the 5CB monomers becomes intense.  相似文献   

4.
Broadband dielectric spectroscopy (up to 109 Hz) is employed to study the molecular dynamics of the liquid crystal 4-n-pentyl-4'-cyanobiphenyl (5CB) in the free bulk phase and confined in cylindrical channels of Anopore membranes having a diameter of 0.2 μm and length of about 60 μm. The bulk samples of 5CB orient almost homeotropically between the untreated metal electrodes of the measurement set-up, and two relaxation processes are observed: the slower δ-relaxation is assigned to hindered rotation (180° flips) of the molecules around their molecular short axis, and a faster second process is attributed to the tumbling of the molecules about this axis. In the confined 5CB samples, the membrane pores align the nematic director axially or radially depending upon their surface preparation. Planar (axial) alignment is always found in untreated membranes, whereas radial alignment was achieved by treatment with decanoic acid. Consequently the director field is fixed perpendicular or parallel to the electric field and we are able to study each of the two relaxation processes separately by appropriate surface treatment of the pores. The frequencies of both processes are found to be unchanged with respect to the bulk phase. We extract the frequency dependence of the dielectric anisotropy δε from the dispersion curves of ε∥ and ε⊥. Two changes of sign of δε = (ε∥-ε⊥) are detected as predicted in the literature.  相似文献   

5.
We present a detailed theoretical and experimental study of the reflectance response of a deformed-helix ferroelectric (DHF) liquid crystal (LC) cell to an applied voltage under cross-polarisers. Using a model based on the effective dielectric tensor approximation, we derive simple analytical formulas to design a LC cell with maximum modulation depth and optimal linearity of the electro-optical response intensity versus the electric field. Our experimental results show that the cell works at frequencies up to 10 kHz and exhibits excellent linearity, with a total harmonic distortion as low as ?70 dB. These findings suggest that DHF-LCs can be exploited to develop simple and accurate optical sensors.  相似文献   

6.
The dielectric properties of a polymer‐dispersed liquid crystal (PDLC), a liquid‐crystal (LC) mixture (BL036), and three polymer matrices of PN314 containing different amounts of BLO36 were determined over a range of frequencies and temperatures and, for the LC and PDLC, over a range of voltages leading to homeotropic alignment of the LC. The overall dielectric relaxation process was a weighted sum of contributions from (1) the primary (δ) process in the LC arising from the motions of the dipoles about the short molecular axis and (2) dipole motions in the polymer matrix. The dielectric spectra were determined as a function of frequency, temperature, and, when appropriate, applied voltage. An equivalent electrical circuit was used as a working model to describe the dielectric behavior of the PDLC in the absence and presence of applied voltages. Agreement between the dielectric data and this model was achieved if a portion of the LC phase at the interface was assumed to be immobile. The director order parameter for the LC component in the PDLC was determined from dielectric measurements as the material was aligned homeotropically in an applied electric field. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1173–1194, 2001  相似文献   

7.
Results are reported of light scattering and dielectric measurements on solutions of 4-n-pentyl-4'-cyanobiphenyl (5CB) and 4-n-pentyl-4'-cyanobicyclo-hexane (5CCH). Correlation factors g1 and g2 are deduced from the measurements, and are discussed in terms of a model for molecular association. It is concluded that at low concentrations the association between 5CB molecules is substantially greater than that between 5CCH molecules.  相似文献   

8.
A comprehensive study of the dielectric properties of 4-pentyl-4′-cyanobiphenyl (5CB) liquid crystal filled with silica particles (particle size 30–80 nm, concentration 2, 3, 5, 10 and 15 wt%). Dielectric spectroscopy in the frequency range 100 to 10 7 Hz was applied to investigate the influence of the filler on the dynamic behaviour of the liquid crystal molecules in both the nematic and isotropic phases. In this frequency range one relaxation process is observed (at f>106 Hz). The dynamical behaviour of the 5CB liquid crystal is described by the Cole-Cole relaxation function. The temperature dependence of the relaxation time obeys the empirical Arrhenius equation. The activation energies are approximately 75 kJ mol1 for the pure 5CB sample in the nematic phase and 50 kJ mol1 for the 5 wt% silica-filled 5CB sample. These values are compared with the corresponding literature values. The reversible electro-mechanical response of these samples under the influence of an applied a.c. electric field is investigated.  相似文献   

9.
Well-defined liquid crystal gels from telechelic polymers   总被引:1,自引:0,他引:1  
Well-defined liquid crystal networks with controlled molecular weight between cross-links and cross-link functionality were prepared by "click" cross-linking of telechelic polymers produced by ring-opening metathesis polymerization (ROMP). The networks readily swell in a small molecule liquid crystal, 5CB, to form LC gels with high swelling ratios. These gels exhibit fast, reversible, and low-threshold optic switching under applied electric fields when they are unconstrained between electrodes. For a given electric field, the LC gels prepared from shorter telechelic polymers showed a reduced degree of switching than their counterparts made from longer polymer strands. The reported approach provides control over important parameters for LC networks, such as the length of the network strands between cross-links, cross-linker functionality, and mesogen density. Therefore, it allows a detailed study of relationships between molecular structure and macroscopic properties of these scientifically and technologically interesting networks.  相似文献   

10.
Abstract— The mechanisms of orientation in pulsed and alternating electric fields of thylakoids (derived from the sonication of spinach chloroplasts) and of light-harvesting chlorophyll a/b-protein complexes (CPII) were investigated by utilizing linear dichroism techniques. Comparisons of the linear dichroism spectra of thylakoids and CPII particles suggest that the latter are oriented with their directions of largest electronic polarizabilities (and thus probably their largest dimensions) within the thylakoid membrane planes. At low electric field strengths (< 12 V cm?1), and at low frequencies of alternating electric fields (< 0.25 Hz), thylakoid membranes tend to align with their normals parallel to the direction of the applied electric field; the mechanism of orientation involves a permanent dipole moment of the thylakoids which is oriented perpendicular to the planes of the membranes. However, at high field strengths and high frequencies of the applied alternating electric fields, the thylakoids tend to orient with their planes parallel to the applied field, thus exhibiting an inversion of the sign of the linear dichroism as the electric field strength is increased. At the higher frequencies and at higher field strengths, the orientation mechanisms of the thylakoids involve induced dipole moments related to anisotropies in the electronic polarizabilities. The polarizability is higher within the plane than along a normal to the plane, thus accounting for the inversion of the dichroism as the electric field strength is increased. The CPII particles align with their largest dimension parallel to the applied field at all field strength, indicating that the induced dipole moment dominates the orientation mechanisms in pulsed electric fields. The magnitude of the absolute linear dichroism of CPII suspensions increases with increasing dilution, indicating that aggregates of lower symmetry are formed at higher concentrations of the CPII complexes.  相似文献   

11.
Using single molecule polarization spectroscopy, we investigated the alignment of a polymer solute with respect to the liquid crystal (LC) director in an LC device while applying an external electric field. The polymer solute is poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (or MEH-PPV), and the LC solvent is 5CB. The electric field induces a change in the LC director orientation from a planar alignment (no electric field) to a perpendicular (homeotropic) alignment with an applied field of 5.5 x 103 V/cm. We find that the polymer chains align with the LC director in both planar and homeotropic alignment when measured in the bulk of the LC solution away from the device interface. Single molecule polarization distributions measured as a function of distance from the LC device interface reveal a continuous change of the MEH-PPV alignment from planar to homeotropic. The observed polarization distributions are modeled using a conventional elastic model that predicts the depth profile of the LC director orientation for the applied electric field. The excellent agreement between experiment and simulations shows that the alignment of MEH-PPV follows the LC director throughout the LC sample. Furthermore, our results suggest that conjugated polymers such as MEH-PPV can be used as sensitive local probes to explore complex (and unknown) structures in anisotropic media.  相似文献   

12.
Flexible dielectric chloroprene rubber (CR) nanocomposites reinforced by one-dimensional carbon nanotube (CNT)/two dimensional reduced graphene oxide hybrids have been prepared using two-roll mill mixing technique. Non-covalent π-π interaction between multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) nanosheets and the secondary interaction between fillers and chloroprene rubber matrix are responsible for generating the effective load transfer between RGO/MWCNTs and CR. The prepared RGO-MWCNT hybrid nanocomposites with high dielectric constant (≈650), low dielectric loss (≈0.42) and high energy storage efficiency (78.6%) values are practically good enough to use as a low cost polymeric dielectric layer in transistors. Furthermore, the prepared nanocomposites showed excellent electromagnetic effectiveness; a maximum shielding efficiency of 11.87 dB @ 3.5 GHz was achieved at 4 phr of MWCNT loading. This excellent electromechanical performance can be ascribed to the synergistic effect of RGO-MWCNT hybrid suggesting that this novel hybrid nanocomposite serves as an attractive candidate in modern electronics and electric power systems.  相似文献   

13.
Determining creatinine levels in blood is of great importance in the detection of high risk for renal failure. Here, we report a simple methodology for real-time monitoring of creatinine employing surface-driven ordering transitions in liquid crystals (LCs) by changing pH in presence of creatinine deiminase enzyme. It is found that when 5CB (4-Cyano-4?-pentylbiphenyl) LC doped with 4?-hexyl-biphenyl-4-carboxylic acid, a bright optical appearance was observed (at aqueous–LC interface) which is not disturbed in presence of creatinine, consistent with a planar/tilted orientation of the LC molecules at those interface. Interestingly, in presence of creatinine deiminase, an ordering transition was observed resulting from enzymatic reactions (giving rise to NH4+ ions) that can change the local pH values and lead to dark optical appearance of the LC. Presence of different amounts of creatinine would lead varied ordering transition that can be monitored in real time in presence of creatinine deiminase. Our approach could detect the creatinine levels as low as that of the healthy adult (~50 µM) and can be successfully applied to measure higher concentration of creatinine in real time using dynamic optical response of the LC.  相似文献   

14.
It was found that doping a nematic liquid crystal (LC) with a small amount of ferroelectric nanoparticles strongly affects the dielectric properties of the system. In particular, adding the ferroelectric particles results in a shift of the absorption bands corresponding to the rotation of liquid crystal molecules around their short axes to lower frequencies and in an increase of the amplitude and with of the absorption bands. This suggests that strong interactions occur between the LC molecules and the particles, caused by the large dipole moment and high polarizability of the ferro-particles. The ferroelectric particles affect not only dielectric losses, but also dielectric permittivity of the system. Specifically, the static dielectric permittivity and the dielectric anisotropy of the suspension are more than twice that of the pure LC.  相似文献   

15.
It was found that doping a nematic liquid crystal (LC) with a small amount of ferroelectric nanoparticles strongly affects the dielectric properties of the system. In particular, adding the ferroelectric particles results in a shift of the absorption bands corresponding to the rotation of liquid crystal molecules around their short axes to lower frequencies and in an increase of the amplitude and with of the absorption bands. This suggests that strong interactions occur between the LC molecules and the particles, caused by the large dipole moment and high polarizability of the ferro-particles. The ferroelectric particles affect not only dielectric losses, but also dielectric permittivity of the system. Specifically, the static dielectric permittivity and the dielectric anisotropy of the suspension are more than twice that of the pure LC.  相似文献   

16.
《Liquid crystals》1998,25(4):475-479
First results of investigations of electro-optical properties of liquid crystalline (LC) dendrimers in solution are presented. Measurements of electric birefringence (Kerr effect) and dielectric polarization of first generation carbosilane dendrimers with different ester linked terminal mesogenic groups (cholesteryl, cyanobiphenylyl and 4-methoxyphenyl benzoate) have been carried out using dilute solutions in CCl4. The results show that the dielectric polarization is proportional to the second power of the electric field in accordance with Kerr law. The Kerr constants calculated are close to those of the low molar mass analogues of the corresponding mesogenic groups. Thus the electric birefringence of the LC dendrimer solutions is mainly determined by the electro-optical properties of their terminal mesogenic groups oriented in the electric field independently of the main chain.  相似文献   

17.
Shin-Woong Kang 《Liquid crystals》2013,40(11):1600-1604
We examined the effect of an electric field applied during the injection procedure on the polar pretilt angle of a nematic liquid crystal (LC). The pretilt angle of the sample injected at 25°C gradually increased as the electric field was increased. On the other hand, the pretilt angle of a sample injected at 90°C (which is above the nematic-isotropic phase transition temperature of LC) showed a sudden increase in the presence of the electric field and also increased with a greater electric field. We think the alignment layer might be swollen with LC molecules, and the rotation of the immersed LC molecules by the electric field induces a deformation of the alignment layer. These results imply LC and the alignment layer were coupled, and their cooperation had an influence on determining the bulk pretilt angle.  相似文献   

18.
We report orientational anchoring transitions at aqueous interfaces of a water-immiscible, thermotropic liquid crystal (LC; nematic phase of 4'-pentyl-4-cyanobiphenyl (5CB)) that are induced by changes in pH and the addition of simple electrolytes (NaCl) to the aqueous phase. Whereas measurements of the zeta potential on the aqueous side of the interface of LC-in-water emulsions prepared with 5CB confirm pH-dependent formation of an electrical double layer extending into the aqueous phase, quantification of the orientational ordering of the LC leads to the proposition that an electrical double layer is also formed on the LC-side of the interface with an internal electric field that drives the LC anchoring transition. Further support for this conclusion is obtained from measurements of the dependence of LC ordering on pH and ionic strength, as well as a simple model based on the Poisson-Boltzmann equation from which we calculate the contribution of an electrical double layer to the orientational anchoring energy of the LC. Overall, the results presented herein provide new fundamental insights into ionic phenomena at LC-aqueous interfaces, and expand the range of solutes known to cause orientational anchoring transitions at LC-aqueous interfaces beyond previously examined amphiphilic adsorbates.  相似文献   

19.
Organic–inorganic hybrid liquid crystal (LC) gels have been synthesised by the thiol-ene reaction of a multifunctional cyclic siloxane, 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (TVMCTS) and alkane dithiols, 1,6-hexanedithiol (HDT) or 1,9-decanedithiol (DDT), in LC matrices, 4-cyano-4?-pentylbiphenyl (5CB) or 4′-n-octyl-4-cyano-biphenyl (8CB). The LC gels were prepared in an isotropic phase at 70°C or mesophases at 25°C using radical initiators. The phase transition temperatures from a mesophase to an isotropic phase of the resulting gels were lower than those of the original LCs. The gels containing 8CB (8CB gels) prepared at 25°C showed two phase transitions: smectic-to-nematic and nematic-to-isotropic transitions. By contrast, the 8CB gels synthesised in the isotropic phase showed only one phase transition from smectic phase directly to isotropic phase. Reaction conversions in the LC gels prepared at 70°C were higher than that in the gels prepared at 25°C. Scanning microscopic light scattering analysis of the LC gels cleared homogeneous small size mesh with a small amount of large defect. Polarisation micrographs of the LC gels showed framed optical textures derived from the LC molecules at room temperature. The LC gels containing more than 90 wt% of LC showed electro-optic response.  相似文献   

20.
A dielectric anisotropy property of a TEGDC (tetraethylene glycol-bis(3-methylimidazolium) dichloride) is investigated as a function of frequency. TEGDC showed an extremely large negative dielectric anisotropy (-10.95 to -4753.73). Variation of dielectric anisotropy (delta epsilon) with respect to the spot frequencies reveals that liquid crystal (LC) orientation has an n-type property at low frequencies and as the frequency increases dielectric anisotropy character shifts from negative dielectric anisotropy type (n-type) to positive dielectric anisotropy type (p-type). Consequently, the TEGDC is a liquid crystal with large negative dielectric anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号